Transport collapse in dynamically evolving networks
Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the...
Gespeichert in:
Veröffentlicht in: | Journal of the Royal Society interface 2023-03, Vol.20 (200), p.20220906-20220906 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20220906 |
---|---|
container_issue | 200 |
container_start_page | 20220906 |
container_title | Journal of the Royal Society interface |
container_volume | 20 |
creator | Berthelot, Geoffroy Tupikina, Liubov Kang, Min-Yeong Dedecker, Jérôme Grebenkov, Denis |
description | Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks. |
doi_str_mv | 10.1098/rsif.2022.0906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10031428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2789711043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-865e70a45bd9492ceef6bd53e3842962dc1c0e7968c9c736dabb29c901c8716f3</originalsourceid><addsrcrecordid>eNpdkb1PwzAQxS0EoqWwMqKMMCT4K449oaoCilSJpcyW4zitIYmLnQb1vydRCypMPtnv3vndD4BrBBMEBb_3wZYJhhgnUEB2AsYoozhOGcOnR_UIXITwDiHJSJqegxFhgjLI2RiQpVdN2DjfRtpVldoEE9kmKnaNqq1WVbWLTOeqzjarqDHtl_Mf4RKclaoK5upwTsDb0-NyNo8Xr88vs-ki1hTTNuYsNRlUNM0LQQXWxpQsL1JiCKdYMFxopKHJBONa6IywQuU5FlpApHmGWEkm4GHvu9nmtSm0aVqvKrnxtlZ-J52y8u9LY9dy5TqJ-qSIYt473O0d1v_65tOFHO5g_1MumOhQr709TPPuc2tCK2sbtOl30hi3DRJnXGQIQUp6abKXau9C8Kb89UZQDljkgEUOWOSApW-4OU7yK__hQL4B72SJdQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2789711043</pqid></control><display><type>article</type><title>Transport collapse in dynamically evolving networks</title><source>PubMed Central</source><creator>Berthelot, Geoffroy ; Tupikina, Liubov ; Kang, Min-Yeong ; Dedecker, Jérôme ; Grebenkov, Denis</creator><creatorcontrib>Berthelot, Geoffroy ; Tupikina, Liubov ; Kang, Min-Yeong ; Dedecker, Jérôme ; Grebenkov, Denis</creatorcontrib><description>Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.</description><identifier>ISSN: 1742-5662</identifier><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2022.0906</identifier><identifier>PMID: 36946086</identifier><language>eng</language><publisher>England: the Royal Society</publisher><subject>Condensed Matter ; Life Sciences–Physics interface ; Nonlinear Sciences ; Physics</subject><ispartof>Journal of the Royal Society interface, 2023-03, Vol.20 (200), p.20220906-20220906</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2023 The Authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c424t-865e70a45bd9492ceef6bd53e3842962dc1c0e7968c9c736dabb29c901c8716f3</cites><orcidid>0000-0002-6273-9164 ; 0000-0002-7169-5706 ; 0000-0002-8838-0356 ; 0000-0003-4036-6114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031428/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10031428/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36946086$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04248969$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Berthelot, Geoffroy</creatorcontrib><creatorcontrib>Tupikina, Liubov</creatorcontrib><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Dedecker, Jérôme</creatorcontrib><creatorcontrib>Grebenkov, Denis</creatorcontrib><title>Transport collapse in dynamically evolving networks</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.</description><subject>Condensed Matter</subject><subject>Life Sciences–Physics interface</subject><subject>Nonlinear Sciences</subject><subject>Physics</subject><issn>1742-5662</issn><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkb1PwzAQxS0EoqWwMqKMMCT4K449oaoCilSJpcyW4zitIYmLnQb1vydRCypMPtnv3vndD4BrBBMEBb_3wZYJhhgnUEB2AsYoozhOGcOnR_UIXITwDiHJSJqegxFhgjLI2RiQpVdN2DjfRtpVldoEE9kmKnaNqq1WVbWLTOeqzjarqDHtl_Mf4RKclaoK5upwTsDb0-NyNo8Xr88vs-ki1hTTNuYsNRlUNM0LQQXWxpQsL1JiCKdYMFxopKHJBONa6IywQuU5FlpApHmGWEkm4GHvu9nmtSm0aVqvKrnxtlZ-J52y8u9LY9dy5TqJ-qSIYt473O0d1v_65tOFHO5g_1MumOhQr709TPPuc2tCK2sbtOl30hi3DRJnXGQIQUp6abKXau9C8Kb89UZQDljkgEUOWOSApW-4OU7yK__hQL4B72SJdQ</recordid><startdate>20230322</startdate><enddate>20230322</enddate><creator>Berthelot, Geoffroy</creator><creator>Tupikina, Liubov</creator><creator>Kang, Min-Yeong</creator><creator>Dedecker, Jérôme</creator><creator>Grebenkov, Denis</creator><general>the Royal Society</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6273-9164</orcidid><orcidid>https://orcid.org/0000-0002-7169-5706</orcidid><orcidid>https://orcid.org/0000-0002-8838-0356</orcidid><orcidid>https://orcid.org/0000-0003-4036-6114</orcidid></search><sort><creationdate>20230322</creationdate><title>Transport collapse in dynamically evolving networks</title><author>Berthelot, Geoffroy ; Tupikina, Liubov ; Kang, Min-Yeong ; Dedecker, Jérôme ; Grebenkov, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-865e70a45bd9492ceef6bd53e3842962dc1c0e7968c9c736dabb29c901c8716f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Condensed Matter</topic><topic>Life Sciences–Physics interface</topic><topic>Nonlinear Sciences</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berthelot, Geoffroy</creatorcontrib><creatorcontrib>Tupikina, Liubov</creatorcontrib><creatorcontrib>Kang, Min-Yeong</creatorcontrib><creatorcontrib>Dedecker, Jérôme</creatorcontrib><creatorcontrib>Grebenkov, Denis</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berthelot, Geoffroy</au><au>Tupikina, Liubov</au><au>Kang, Min-Yeong</au><au>Dedecker, Jérôme</au><au>Grebenkov, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport collapse in dynamically evolving networks</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2023-03-22</date><risdate>2023</risdate><volume>20</volume><issue>200</issue><spage>20220906</spage><epage>20220906</epage><pages>20220906-20220906</pages><issn>1742-5662</issn><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Transport in complex networks can describe a variety of natural and human-engineered processes including biological, societal and technological ones. However, how the properties of the source and drain nodes can affect transport subject to random failures, attacks or maintenance optimization in the network remain unknown. In this article, the effects of both the distance between the source and drain nodes and the degree of the source node on the time of transport collapse are studied in scale-free and lattice-based transport networks. These effects are numerically evaluated for two strategies, which employ either transport-based or random link removal. Scale-free networks with small distances are found to result in larger times of collapse. In lattice-based networks, both the dimension and boundary conditions are shown to have a major effect on the time of collapse. We also show that adding a direct link between the source and the drain increases the robustness of scale-free networks when subject to random link removals. Interestingly, the distribution of the times of collapse is then similar to the one of lattice-based networks.</abstract><cop>England</cop><pub>the Royal Society</pub><pmid>36946086</pmid><doi>10.1098/rsif.2022.0906</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6273-9164</orcidid><orcidid>https://orcid.org/0000-0002-7169-5706</orcidid><orcidid>https://orcid.org/0000-0002-8838-0356</orcidid><orcidid>https://orcid.org/0000-0003-4036-6114</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5662 |
ispartof | Journal of the Royal Society interface, 2023-03, Vol.20 (200), p.20220906-20220906 |
issn | 1742-5662 1742-5689 1742-5662 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10031428 |
source | PubMed Central |
subjects | Condensed Matter Life Sciences–Physics interface Nonlinear Sciences Physics |
title | Transport collapse in dynamically evolving networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T04%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20collapse%20in%20dynamically%20evolving%20networks&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Berthelot,%20Geoffroy&rft.date=2023-03-22&rft.volume=20&rft.issue=200&rft.spage=20220906&rft.epage=20220906&rft.pages=20220906-20220906&rft.issn=1742-5662&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2022.0906&rft_dat=%3Cproquest_pubme%3E2789711043%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2789711043&rft_id=info:pmid/36946086&rfr_iscdi=true |