Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth
The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan syntha...
Gespeichert in:
Veröffentlicht in: | Journal of bacteriology 2023-03, Vol.205 (3), p.e0042822-e0042822 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0042822 |
---|---|
container_issue | 3 |
container_start_page | e0042822 |
container_title | Journal of bacteriology |
container_volume | 205 |
creator | Weaver, Anna Taguchi, Atsushi Dörr, Tobias |
description | The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies. |
doi_str_mv | 10.1128/jb.00428-22 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10029718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2790442998</sourcerecordid><originalsourceid>FETCH-LOGICAL-a509t-db227062d2d7b41ee15eec8e5be8a306816453b430fc93344d841c6c882eefa83</originalsourceid><addsrcrecordid>eNptkU1LxDAQhoMoun6cvEvBiyDVZJK2iRdR0VVw0YOeQ5pONUu3WZOu4r-3q-snnuYwzzzJzEvINqMHjIE8HJcHlAqQKcASGTCqZJplnC6TAaXAUsUUXyPrMY4pZUJksErWeF5kBVAxIMORiR2GmPg6GblYuYC2c749Sm5x2rnKPzSv1rTJsC8-uspEjIlrk1Nj-zFnmmQY_Ev3uElWatNE3FrUDXJ_cX53dple3wyvzk6uU5NR1aVVCVDQHCqoilIwRJYhWolZidJwmkuWi4yXgtPaKs6FqKRgNrdSAmJtJN8gxx_e6aycYGWx7YJp9DS4iQmv2hunf3da96gf_LNm_TFUweaGvYUh-KcZxk5PXLTYNKZFP4saikJIJXmR9-juH3TsZ6Ht9-spRYUApebC_Q_KBh9jwPrrN4zqeUJ6XOr3hDTA9_MmTuDb9z-683PXL-1nevwN-KqYYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2790442998</pqid></control><display><type>article</type><title>Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Weaver, Anna ; Taguchi, Atsushi ; Dörr, Tobias</creator><contributor>Champion, Patricia A.</contributor><creatorcontrib>Weaver, Anna ; Taguchi, Atsushi ; Dörr, Tobias ; Champion, Patricia A.</creatorcontrib><description>The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies.</description><identifier>ISSN: 0021-9193</identifier><identifier>EISSN: 1098-5530</identifier><identifier>DOI: 10.1128/jb.00428-22</identifier><identifier>PMID: 36757204</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Autolysins ; Bacteria ; Bacteria - metabolism ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bacteriology ; Cell Division ; Cell Wall - metabolism ; Cell walls ; Enzymes ; Glycan ; Glycosidases ; Glycoside Hydrolases - genetics ; Glycoside Hydrolases - metabolism ; Localization ; Minireview ; Penicillin ; Peptidoglycan - metabolism ; Peptidoglycans ; Physiology ; Protein interaction ; Proteins ; Redundancy ; Special Series: 2022 Molecular Genetics of Bacteria and Phages Meeting ; Strands ; Substrate preferences ; Substrates</subject><ispartof>Journal of bacteriology, 2023-03, Vol.205 (3), p.e0042822-e0042822</ispartof><rights>Copyright © 2023 American Society for Microbiology.</rights><rights>Copyright American Society for Microbiology Mar 2023</rights><rights>Copyright © 2023 American Society for Microbiology. 2023 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a509t-db227062d2d7b41ee15eec8e5be8a306816453b430fc93344d841c6c882eefa83</citedby><cites>FETCH-LOGICAL-a509t-db227062d2d7b41ee15eec8e5be8a306816453b430fc93344d841c6c882eefa83</cites><orcidid>0000-0003-4962-0393 ; 0000-0002-0556-0336 ; 0000-0003-3283-9161</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029718/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10029718/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,728,781,785,886,27929,27930,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36757204$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Champion, Patricia A.</contributor><creatorcontrib>Weaver, Anna</creatorcontrib><creatorcontrib>Taguchi, Atsushi</creatorcontrib><creatorcontrib>Dörr, Tobias</creatorcontrib><title>Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth</title><title>Journal of bacteriology</title><addtitle>J Bacteriol</addtitle><addtitle>J Bacteriol</addtitle><description>The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies.</description><subject>Autolysins</subject><subject>Bacteria</subject><subject>Bacteria - metabolism</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bacteriology</subject><subject>Cell Division</subject><subject>Cell Wall - metabolism</subject><subject>Cell walls</subject><subject>Enzymes</subject><subject>Glycan</subject><subject>Glycosidases</subject><subject>Glycoside Hydrolases - genetics</subject><subject>Glycoside Hydrolases - metabolism</subject><subject>Localization</subject><subject>Minireview</subject><subject>Penicillin</subject><subject>Peptidoglycan - metabolism</subject><subject>Peptidoglycans</subject><subject>Physiology</subject><subject>Protein interaction</subject><subject>Proteins</subject><subject>Redundancy</subject><subject>Special Series: 2022 Molecular Genetics of Bacteria and Phages Meeting</subject><subject>Strands</subject><subject>Substrate preferences</subject><subject>Substrates</subject><issn>0021-9193</issn><issn>1098-5530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkU1LxDAQhoMoun6cvEvBiyDVZJK2iRdR0VVw0YOeQ5pONUu3WZOu4r-3q-snnuYwzzzJzEvINqMHjIE8HJcHlAqQKcASGTCqZJplnC6TAaXAUsUUXyPrMY4pZUJksErWeF5kBVAxIMORiR2GmPg6GblYuYC2c749Sm5x2rnKPzSv1rTJsC8-uspEjIlrk1Nj-zFnmmQY_Ev3uElWatNE3FrUDXJ_cX53dple3wyvzk6uU5NR1aVVCVDQHCqoilIwRJYhWolZidJwmkuWi4yXgtPaKs6FqKRgNrdSAmJtJN8gxx_e6aycYGWx7YJp9DS4iQmv2hunf3da96gf_LNm_TFUweaGvYUh-KcZxk5PXLTYNKZFP4saikJIJXmR9-juH3TsZ6Ht9-spRYUApebC_Q_KBh9jwPrrN4zqeUJ6XOr3hDTA9_MmTuDb9z-683PXL-1nevwN-KqYYw</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Weaver, Anna</creator><creator>Taguchi, Atsushi</creator><creator>Dörr, Tobias</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4962-0393</orcidid><orcidid>https://orcid.org/0000-0002-0556-0336</orcidid><orcidid>https://orcid.org/0000-0003-3283-9161</orcidid></search><sort><creationdate>20230321</creationdate><title>Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth</title><author>Weaver, Anna ; Taguchi, Atsushi ; Dörr, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a509t-db227062d2d7b41ee15eec8e5be8a306816453b430fc93344d841c6c882eefa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autolysins</topic><topic>Bacteria</topic><topic>Bacteria - metabolism</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bacteriology</topic><topic>Cell Division</topic><topic>Cell Wall - metabolism</topic><topic>Cell walls</topic><topic>Enzymes</topic><topic>Glycan</topic><topic>Glycosidases</topic><topic>Glycoside Hydrolases - genetics</topic><topic>Glycoside Hydrolases - metabolism</topic><topic>Localization</topic><topic>Minireview</topic><topic>Penicillin</topic><topic>Peptidoglycan - metabolism</topic><topic>Peptidoglycans</topic><topic>Physiology</topic><topic>Protein interaction</topic><topic>Proteins</topic><topic>Redundancy</topic><topic>Special Series: 2022 Molecular Genetics of Bacteria and Phages Meeting</topic><topic>Strands</topic><topic>Substrate preferences</topic><topic>Substrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weaver, Anna</creatorcontrib><creatorcontrib>Taguchi, Atsushi</creatorcontrib><creatorcontrib>Dörr, Tobias</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of bacteriology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weaver, Anna</au><au>Taguchi, Atsushi</au><au>Dörr, Tobias</au><au>Champion, Patricia A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth</atitle><jtitle>Journal of bacteriology</jtitle><stitle>J Bacteriol</stitle><addtitle>J Bacteriol</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>205</volume><issue>3</issue><spage>e0042822</spage><epage>e0042822</epage><pages>e0042822-e0042822</pages><issn>0021-9193</issn><eissn>1098-5530</eissn><abstract>The dynamic composition of the peptidoglycan cell wall has been the subject of intense research for decades, yet how bacteria coordinate the synthesis of new peptidoglycan with the turnover and remodeling of existing peptidoglycan remains elusive. Diversity and redundancy within peptidoglycan synthases and peptidoglycan autolysins, enzymes that degrade peptidoglycan, have often made it challenging to assign physiological roles to individual enzymes and determine how those activities are regulated. For these reasons, peptidoglycan glycosidases, which cleave within the glycan strands of peptidoglycan, have proven veritable masters of misdirection over the years. Unlike many of the broadly conserved peptidoglycan synthetic complexes, diverse bacteria can employ unrelated glycosidases to achieve the same physiological outcome. Additionally, although the mechanisms of action for many individual enzymes have been characterized, apparent conserved homologs in other organisms can exhibit an entirely different biochemistry. This flexibility has been recently demonstrated in the context of three functions critical to vegetative growth: (i) release of newly synthesized peptidoglycan strands from their membrane anchors, (ii) processing of peptidoglycan turned over during cell wall expansion, and (iii) removal of peptidoglycan fragments that interfere with daughter cell separation during cell division. Finally, the regulation of glycosidase activity during these cell processes may be a cumulation of many factors, including protein-protein interactions, intrinsic substrate preferences, substrate availability, and subcellular localization. Understanding the true scope of peptidoglycan glycosidase activity will require the exploration of enzymes from diverse organisms with equally diverse growth and division strategies.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>36757204</pmid><doi>10.1128/jb.00428-22</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4962-0393</orcidid><orcidid>https://orcid.org/0000-0002-0556-0336</orcidid><orcidid>https://orcid.org/0000-0003-3283-9161</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9193 |
ispartof | Journal of bacteriology, 2023-03, Vol.205 (3), p.e0042822-e0042822 |
issn | 0021-9193 1098-5530 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10029718 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Autolysins Bacteria Bacteria - metabolism Bacterial Proteins - genetics Bacterial Proteins - metabolism Bacteriology Cell Division Cell Wall - metabolism Cell walls Enzymes Glycan Glycosidases Glycoside Hydrolases - genetics Glycoside Hydrolases - metabolism Localization Minireview Penicillin Peptidoglycan - metabolism Peptidoglycans Physiology Protein interaction Proteins Redundancy Special Series: 2022 Molecular Genetics of Bacteria and Phages Meeting Strands Substrate preferences Substrates |
title | Masters of Misdirection: Peptidoglycan Glycosidases in Bacterial Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T14%3A25%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Masters%20of%20Misdirection:%20Peptidoglycan%20Glycosidases%20in%20Bacterial%20Growth&rft.jtitle=Journal%20of%20bacteriology&rft.au=Weaver,%20Anna&rft.date=2023-03-21&rft.volume=205&rft.issue=3&rft.spage=e0042822&rft.epage=e0042822&rft.pages=e0042822-e0042822&rft.issn=0021-9193&rft.eissn=1098-5530&rft_id=info:doi/10.1128/jb.00428-22&rft_dat=%3Cproquest_pubme%3E2790442998%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2790442998&rft_id=info:pmid/36757204&rfr_iscdi=true |