p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis
Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hype...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2023-04, Vol.299 (4), p.103043-103043, Article 103043 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103043 |
---|---|
container_issue | 4 |
container_start_page | 103043 |
container_title | The Journal of biological chemistry |
container_volume | 299 |
creator | Mager, Carli E. Mormol, Justin M. Shelton, Evan D. Murphy, Parker R. Bowman, Bridget A. Barley, Timothy J. Wang, Xiantao Linn, Sarah C. Liu, Kevin Nelin, Leif D. Hafner, Markus Liu, Yusen |
description | Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis. |
doi_str_mv | 10.1016/j.jbc.2023.103043 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823001758</els_id><sourcerecordid>2778973132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhA3BBPnLJ4j9xEosDKhXbom3VPYDEzXLsSeqVNw52stJ-e9xuW7UX5mKN3m-e7XkIfaRkSQmtvmyX29YsGWE895yU_BVaUNLwggv65zVaEMJoIZloTtC7lLYkVynpW3TCq4ZwKeQCjSNv8PXZZo31YPH1elNQbMIwxeDxdAu49wcT_GFyBo8x9FHv8N7pe6l13TyYyYVB-0cuuYQj9LPXU4h4s1qvvnNs5-iGHicYs_wevem0T_Dh4TxFv1c_fp1fFlc3Fz_Pz64KUwo2FWC41NZQapvK6EaCKUtpBK0JkV1tbVWVpe00E3XFKyvaFhiriRC8Mpw1XclP0bej7zi3O7AG8p-0V2N0Ox0PKminXiqDu1V92CuatyZoxbPD5weHGP7OkCa1c8mA93qAMCfF6rqRNaecZZQeURNDShG6p3soUXdRqa3KUam7qNQxqjzz6fkDnyYes8nA1yMAeU17B1El42AwYF0EMykb3H_s_wHzm6S4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778973132</pqid></control><display><type>article</type><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</creator><creatorcontrib>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</creatorcontrib><description>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.103043</identifier><identifier>PMID: 36803959</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; c-Jun N-terminal kinase ; Dual Specificity Phosphatase 1 - genetics ; Dual Specificity Phosphatase 1 - metabolism ; dual-specificity phosphoprotein phosphatase ; Escherichia coli - metabolism ; Glycolysis ; infection ; Lactates ; Lipopolysaccharides ; Mice ; Oxygen ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphofructokinase-2 - metabolism ; Protein Tyrosine Phosphatases - metabolism ; sepsis ; Sepsis - genetics</subject><ispartof>The Journal of biological chemistry, 2023-04, Vol.299 (4), p.103043-103043, Article 103043</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</citedby><cites>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</cites><orcidid>0000-0002-4336-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025163/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025163/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36803959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mager, Carli E.</creatorcontrib><creatorcontrib>Mormol, Justin M.</creatorcontrib><creatorcontrib>Shelton, Evan D.</creatorcontrib><creatorcontrib>Murphy, Parker R.</creatorcontrib><creatorcontrib>Bowman, Bridget A.</creatorcontrib><creatorcontrib>Barley, Timothy J.</creatorcontrib><creatorcontrib>Wang, Xiantao</creatorcontrib><creatorcontrib>Linn, Sarah C.</creatorcontrib><creatorcontrib>Liu, Kevin</creatorcontrib><creatorcontrib>Nelin, Leif D.</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Liu, Yusen</creatorcontrib><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</description><subject>Animals</subject><subject>c-Jun N-terminal kinase</subject><subject>Dual Specificity Phosphatase 1 - genetics</subject><subject>Dual Specificity Phosphatase 1 - metabolism</subject><subject>dual-specificity phosphoprotein phosphatase</subject><subject>Escherichia coli - metabolism</subject><subject>Glycolysis</subject><subject>infection</subject><subject>Lactates</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Oxygen</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphofructokinase-2 - metabolism</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>sepsis</subject><subject>Sepsis - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhA3BBPnLJ4j9xEosDKhXbom3VPYDEzXLsSeqVNw52stJ-e9xuW7UX5mKN3m-e7XkIfaRkSQmtvmyX29YsGWE895yU_BVaUNLwggv65zVaEMJoIZloTtC7lLYkVynpW3TCq4ZwKeQCjSNv8PXZZo31YPH1elNQbMIwxeDxdAu49wcT_GFyBo8x9FHv8N7pe6l13TyYyYVB-0cuuYQj9LPXU4h4s1qvvnNs5-iGHicYs_wevem0T_Dh4TxFv1c_fp1fFlc3Fz_Pz64KUwo2FWC41NZQapvK6EaCKUtpBK0JkV1tbVWVpe00E3XFKyvaFhiriRC8Mpw1XclP0bej7zi3O7AG8p-0V2N0Ox0PKminXiqDu1V92CuatyZoxbPD5weHGP7OkCa1c8mA93qAMCfF6rqRNaecZZQeURNDShG6p3soUXdRqa3KUam7qNQxqjzz6fkDnyYes8nA1yMAeU17B1El42AwYF0EMykb3H_s_wHzm6S4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mager, Carli E.</creator><creator>Mormol, Justin M.</creator><creator>Shelton, Evan D.</creator><creator>Murphy, Parker R.</creator><creator>Bowman, Bridget A.</creator><creator>Barley, Timothy J.</creator><creator>Wang, Xiantao</creator><creator>Linn, Sarah C.</creator><creator>Liu, Kevin</creator><creator>Nelin, Leif D.</creator><creator>Hafner, Markus</creator><creator>Liu, Yusen</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4336-6518</orcidid></search><sort><creationdate>20230401</creationdate><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><author>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>c-Jun N-terminal kinase</topic><topic>Dual Specificity Phosphatase 1 - genetics</topic><topic>Dual Specificity Phosphatase 1 - metabolism</topic><topic>dual-specificity phosphoprotein phosphatase</topic><topic>Escherichia coli - metabolism</topic><topic>Glycolysis</topic><topic>infection</topic><topic>Lactates</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Oxygen</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphofructokinase-2 - metabolism</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>sepsis</topic><topic>Sepsis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mager, Carli E.</creatorcontrib><creatorcontrib>Mormol, Justin M.</creatorcontrib><creatorcontrib>Shelton, Evan D.</creatorcontrib><creatorcontrib>Murphy, Parker R.</creatorcontrib><creatorcontrib>Bowman, Bridget A.</creatorcontrib><creatorcontrib>Barley, Timothy J.</creatorcontrib><creatorcontrib>Wang, Xiantao</creatorcontrib><creatorcontrib>Linn, Sarah C.</creatorcontrib><creatorcontrib>Liu, Kevin</creatorcontrib><creatorcontrib>Nelin, Leif D.</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Liu, Yusen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mager, Carli E.</au><au>Mormol, Justin M.</au><au>Shelton, Evan D.</au><au>Murphy, Parker R.</au><au>Bowman, Bridget A.</au><au>Barley, Timothy J.</au><au>Wang, Xiantao</au><au>Linn, Sarah C.</au><au>Liu, Kevin</au><au>Nelin, Leif D.</au><au>Hafner, Markus</au><au>Liu, Yusen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>299</volume><issue>4</issue><spage>103043</spage><epage>103043</epage><pages>103043-103043</pages><artnum>103043</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36803959</pmid><doi>10.1016/j.jbc.2023.103043</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4336-6518</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2023-04, Vol.299 (4), p.103043-103043, Article 103043 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025163 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals c-Jun N-terminal kinase Dual Specificity Phosphatase 1 - genetics Dual Specificity Phosphatase 1 - metabolism dual-specificity phosphoprotein phosphatase Escherichia coli - metabolism Glycolysis infection Lactates Lipopolysaccharides Mice Oxygen p38 MAPK p38 Mitogen-Activated Protein Kinases - metabolism Phosphofructokinase-2 - metabolism Protein Tyrosine Phosphatases - metabolism sepsis Sepsis - genetics |
title | p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p38%20MAPK%20and%20MKP-1%20control%20the%20glycolytic%20program%20via%20the%20bifunctional%20glycolysis%20regulator%20PFKFB3%20during%20sepsis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mager,%20Carli%20E.&rft.date=2023-04-01&rft.volume=299&rft.issue=4&rft.spage=103043&rft.epage=103043&rft.pages=103043-103043&rft.artnum=103043&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.103043&rft_dat=%3Cproquest_pubme%3E2778973132%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778973132&rft_id=info:pmid/36803959&rft_els_id=S0021925823001758&rfr_iscdi=true |