p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis

Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2023-04, Vol.299 (4), p.103043-103043, Article 103043
Hauptverfasser: Mager, Carli E., Mormol, Justin M., Shelton, Evan D., Murphy, Parker R., Bowman, Bridget A., Barley, Timothy J., Wang, Xiantao, Linn, Sarah C., Liu, Kevin, Nelin, Leif D., Hafner, Markus, Liu, Yusen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103043
container_issue 4
container_start_page 103043
container_title The Journal of biological chemistry
container_volume 299
creator Mager, Carli E.
Mormol, Justin M.
Shelton, Evan D.
Murphy, Parker R.
Bowman, Bridget A.
Barley, Timothy J.
Wang, Xiantao
Linn, Sarah C.
Liu, Kevin
Nelin, Leif D.
Hafner, Markus
Liu, Yusen
description Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.
doi_str_mv 10.1016/j.jbc.2023.103043
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925823001758</els_id><sourcerecordid>2778973132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EokvhA3BBPnLJ4j9xEosDKhXbom3VPYDEzXLsSeqVNw52stJ-e9xuW7UX5mKN3m-e7XkIfaRkSQmtvmyX29YsGWE895yU_BVaUNLwggv65zVaEMJoIZloTtC7lLYkVynpW3TCq4ZwKeQCjSNv8PXZZo31YPH1elNQbMIwxeDxdAu49wcT_GFyBo8x9FHv8N7pe6l13TyYyYVB-0cuuYQj9LPXU4h4s1qvvnNs5-iGHicYs_wevem0T_Dh4TxFv1c_fp1fFlc3Fz_Pz64KUwo2FWC41NZQapvK6EaCKUtpBK0JkV1tbVWVpe00E3XFKyvaFhiriRC8Mpw1XclP0bej7zi3O7AG8p-0V2N0Ox0PKminXiqDu1V92CuatyZoxbPD5weHGP7OkCa1c8mA93qAMCfF6rqRNaecZZQeURNDShG6p3soUXdRqa3KUam7qNQxqjzz6fkDnyYes8nA1yMAeU17B1El42AwYF0EMykb3H_s_wHzm6S4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2778973132</pqid></control><display><type>article</type><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</creator><creatorcontrib>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</creatorcontrib><description>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/j.jbc.2023.103043</identifier><identifier>PMID: 36803959</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; c-Jun N-terminal kinase ; Dual Specificity Phosphatase 1 - genetics ; Dual Specificity Phosphatase 1 - metabolism ; dual-specificity phosphoprotein phosphatase ; Escherichia coli - metabolism ; Glycolysis ; infection ; Lactates ; Lipopolysaccharides ; Mice ; Oxygen ; p38 MAPK ; p38 Mitogen-Activated Protein Kinases - metabolism ; Phosphofructokinase-2 - metabolism ; Protein Tyrosine Phosphatases - metabolism ; sepsis ; Sepsis - genetics</subject><ispartof>The Journal of biological chemistry, 2023-04, Vol.299 (4), p.103043-103043, Article 103043</ispartof><rights>2023 The Authors</rights><rights>Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.</rights><rights>2023 The Authors 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</citedby><cites>FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</cites><orcidid>0000-0002-4336-6518</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025163/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10025163/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36803959$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mager, Carli E.</creatorcontrib><creatorcontrib>Mormol, Justin M.</creatorcontrib><creatorcontrib>Shelton, Evan D.</creatorcontrib><creatorcontrib>Murphy, Parker R.</creatorcontrib><creatorcontrib>Bowman, Bridget A.</creatorcontrib><creatorcontrib>Barley, Timothy J.</creatorcontrib><creatorcontrib>Wang, Xiantao</creatorcontrib><creatorcontrib>Linn, Sarah C.</creatorcontrib><creatorcontrib>Liu, Kevin</creatorcontrib><creatorcontrib>Nelin, Leif D.</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Liu, Yusen</creatorcontrib><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</description><subject>Animals</subject><subject>c-Jun N-terminal kinase</subject><subject>Dual Specificity Phosphatase 1 - genetics</subject><subject>Dual Specificity Phosphatase 1 - metabolism</subject><subject>dual-specificity phosphoprotein phosphatase</subject><subject>Escherichia coli - metabolism</subject><subject>Glycolysis</subject><subject>infection</subject><subject>Lactates</subject><subject>Lipopolysaccharides</subject><subject>Mice</subject><subject>Oxygen</subject><subject>p38 MAPK</subject><subject>p38 Mitogen-Activated Protein Kinases - metabolism</subject><subject>Phosphofructokinase-2 - metabolism</subject><subject>Protein Tyrosine Phosphatases - metabolism</subject><subject>sepsis</subject><subject>Sepsis - genetics</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU9v1DAQxS0EokvhA3BBPnLJ4j9xEosDKhXbom3VPYDEzXLsSeqVNw52stJ-e9xuW7UX5mKN3m-e7XkIfaRkSQmtvmyX29YsGWE895yU_BVaUNLwggv65zVaEMJoIZloTtC7lLYkVynpW3TCq4ZwKeQCjSNv8PXZZo31YPH1elNQbMIwxeDxdAu49wcT_GFyBo8x9FHv8N7pe6l13TyYyYVB-0cuuYQj9LPXU4h4s1qvvnNs5-iGHicYs_wevem0T_Dh4TxFv1c_fp1fFlc3Fz_Pz64KUwo2FWC41NZQapvK6EaCKUtpBK0JkV1tbVWVpe00E3XFKyvaFhiriRC8Mpw1XclP0bej7zi3O7AG8p-0V2N0Ox0PKminXiqDu1V92CuatyZoxbPD5weHGP7OkCa1c8mA93qAMCfF6rqRNaecZZQeURNDShG6p3soUXdRqa3KUam7qNQxqjzz6fkDnyYes8nA1yMAeU17B1El42AwYF0EMykb3H_s_wHzm6S4</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Mager, Carli E.</creator><creator>Mormol, Justin M.</creator><creator>Shelton, Evan D.</creator><creator>Murphy, Parker R.</creator><creator>Bowman, Bridget A.</creator><creator>Barley, Timothy J.</creator><creator>Wang, Xiantao</creator><creator>Linn, Sarah C.</creator><creator>Liu, Kevin</creator><creator>Nelin, Leif D.</creator><creator>Hafner, Markus</creator><creator>Liu, Yusen</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4336-6518</orcidid></search><sort><creationdate>20230401</creationdate><title>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</title><author>Mager, Carli E. ; Mormol, Justin M. ; Shelton, Evan D. ; Murphy, Parker R. ; Bowman, Bridget A. ; Barley, Timothy J. ; Wang, Xiantao ; Linn, Sarah C. ; Liu, Kevin ; Nelin, Leif D. ; Hafner, Markus ; Liu, Yusen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-ec39adc11d86ca89ec449c517009f7dd6644dfa257636d5bbe22705536c328f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>c-Jun N-terminal kinase</topic><topic>Dual Specificity Phosphatase 1 - genetics</topic><topic>Dual Specificity Phosphatase 1 - metabolism</topic><topic>dual-specificity phosphoprotein phosphatase</topic><topic>Escherichia coli - metabolism</topic><topic>Glycolysis</topic><topic>infection</topic><topic>Lactates</topic><topic>Lipopolysaccharides</topic><topic>Mice</topic><topic>Oxygen</topic><topic>p38 MAPK</topic><topic>p38 Mitogen-Activated Protein Kinases - metabolism</topic><topic>Phosphofructokinase-2 - metabolism</topic><topic>Protein Tyrosine Phosphatases - metabolism</topic><topic>sepsis</topic><topic>Sepsis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mager, Carli E.</creatorcontrib><creatorcontrib>Mormol, Justin M.</creatorcontrib><creatorcontrib>Shelton, Evan D.</creatorcontrib><creatorcontrib>Murphy, Parker R.</creatorcontrib><creatorcontrib>Bowman, Bridget A.</creatorcontrib><creatorcontrib>Barley, Timothy J.</creatorcontrib><creatorcontrib>Wang, Xiantao</creatorcontrib><creatorcontrib>Linn, Sarah C.</creatorcontrib><creatorcontrib>Liu, Kevin</creatorcontrib><creatorcontrib>Nelin, Leif D.</creatorcontrib><creatorcontrib>Hafner, Markus</creatorcontrib><creatorcontrib>Liu, Yusen</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mager, Carli E.</au><au>Mormol, Justin M.</au><au>Shelton, Evan D.</au><au>Murphy, Parker R.</au><au>Bowman, Bridget A.</au><au>Barley, Timothy J.</au><au>Wang, Xiantao</au><au>Linn, Sarah C.</au><au>Liu, Kevin</au><au>Nelin, Leif D.</au><au>Hafner, Markus</au><au>Liu, Yusen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>299</volume><issue>4</issue><spage>103043</spage><epage>103043</epage><pages>103043-103043</pages><artnum>103043</artnum><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Hyperlactatemia often occurs in critically ill patients during severe sepsis/septic shock and is a powerful predictor of mortality. Lactate is the end product of glycolysis. While hypoxia due to inadequate oxygen delivery may result in anaerobic glycolysis, sepsis also enhances glycolysis under hyperdynamic circulation with adequate oxygen delivery. However, the molecular mechanisms involved are not fully understood. Mitogen-activated protein kinase (MAPK) families regulate many aspects of the immune response during microbial infections. MAPK phosphatase (MKP)-1 serves as a feedback control mechanism for p38 and JNK MAPK activities via dephosphorylation. Here, we found that mice deficient in Mkp-1 exhibited substantially enhanced expression and phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB) 3, a key enzyme that regulates glycolysis following systemic Escherichia coli infection. Enhanced PFKFB3 expression was observed in a variety of tissues and cell types, including hepatocytes, macrophages, and epithelial cells. In bone marrow–derived macrophages, Pfkfb3 was robustly induced by both E. coli and lipopolysaccharide, and Mkp-1 deficiency enhanced PFKFB3 expression with no effect on Pfkfb3 mRNA stability. PFKFB3 induction was correlated with lactate production in both WT and Mkp-1−/− bone marrow–derived macrophage following lipopolysaccharide stimulation. Furthermore, we determined that a PFKFB3 inhibitor markedly attenuated lactate production, highlighting the critical role of PFKFB3 in the glycolysis program. Finally, pharmacological inhibition of p38 MAPK, but not JNK, substantially attenuated PFKFB3 expression and lactate production. Taken together, our studies suggest a critical role of p38 MAPK and MKP-1 in the regulation of glycolysis during sepsis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>36803959</pmid><doi>10.1016/j.jbc.2023.103043</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-4336-6518</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2023-04, Vol.299 (4), p.103043-103043, Article 103043
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10025163
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Animals
c-Jun N-terminal kinase
Dual Specificity Phosphatase 1 - genetics
Dual Specificity Phosphatase 1 - metabolism
dual-specificity phosphoprotein phosphatase
Escherichia coli - metabolism
Glycolysis
infection
Lactates
Lipopolysaccharides
Mice
Oxygen
p38 MAPK
p38 Mitogen-Activated Protein Kinases - metabolism
Phosphofructokinase-2 - metabolism
Protein Tyrosine Phosphatases - metabolism
sepsis
Sepsis - genetics
title p38 MAPK and MKP-1 control the glycolytic program via the bifunctional glycolysis regulator PFKFB3 during sepsis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T12%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=p38%20MAPK%20and%20MKP-1%20control%20the%20glycolytic%20program%20via%20the%20bifunctional%20glycolysis%20regulator%20PFKFB3%20during%20sepsis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Mager,%20Carli%20E.&rft.date=2023-04-01&rft.volume=299&rft.issue=4&rft.spage=103043&rft.epage=103043&rft.pages=103043-103043&rft.artnum=103043&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/j.jbc.2023.103043&rft_dat=%3Cproquest_pubme%3E2778973132%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2778973132&rft_id=info:pmid/36803959&rft_els_id=S0021925823001758&rfr_iscdi=true