Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups

Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales Henri Poincaré 2023, Vol.24 (3), p.717-750
Hauptverfasser: Wirth, Melchior, Zhang, Haonan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 750
container_issue 3
container_start_page 717
container_title Annales Henri Poincaré
container_volume 24
creator Wirth, Melchior
Zhang, Haonan
description Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.
doi_str_mv 10.1007/s00023-022-01220-x
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10024675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788158976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</originalsourceid><addsrcrecordid>eNp9kctO3DAUhi1UVCj0BVhUkbrpJuXEl9heoWooUAlUIdq15TjOYDqxp3Y8grevh4GBdtGVj3W-_z83hI4a-NwA8OMEAJjUgHENDcZQ3--g_YZiWkPbNm-2MeF76F1Kd1AoQeRbtEdayYqM7KOzWY4rPeVo61M3Wp9c8NUs-N5NJUrVEGJ18zCOdorOVNdZ-ymP1ZWOv8KqurGjm8eQl-kQ7Q56kez7p_cA_Tz7-mN2UV9-P_82-3JZG8rZVMuBEdZZjAWTpBOCMmoka2XXQweEYsElffzRAQzvOwqUsFZj3ptBtoaRA3Sy8V3mbrS9sX6KeqGW0Y06Pqignfo7492tmoeVKgvDtOVrh09PDjH8zjZNanTJ2MVCextyUphLACoIaQv68R_0LuToy3yFEqJhQvI1hTeUiSGlaIdtNw2sy3K1uZMqC1ePd1L3RfTh9RxbyfNhCkA2QCopP7fxpfZ_bP8A3IeeRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788158976</pqid></control><display><type>article</type><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><source>SpringerNature Journals</source><creator>Wirth, Melchior ; Zhang, Haonan</creator><creatorcontrib>Wirth, Melchior ; Zhang, Haonan</creatorcontrib><description>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01220-x</identifier><identifier>PMID: 36950223</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Concavity ; Curvature ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Group theory ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Matrices (mathematics) ; Multipliers ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Semigroups ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023, Vol.24 (3), p.717-750</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</citedby><cites>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</cites><orcidid>0000-0002-0519-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-022-01220-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-022-01220-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36950223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wirth, Melchior</creatorcontrib><creatorcontrib>Zhang, Haonan</creatorcontrib><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><addtitle>Ann Henri Poincare</addtitle><description>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Concavity</subject><subject>Curvature</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Matrices (mathematics)</subject><subject>Multipliers</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Semigroups</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctO3DAUhi1UVCj0BVhUkbrpJuXEl9heoWooUAlUIdq15TjOYDqxp3Y8grevh4GBdtGVj3W-_z83hI4a-NwA8OMEAJjUgHENDcZQ3--g_YZiWkPbNm-2MeF76F1Kd1AoQeRbtEdayYqM7KOzWY4rPeVo61M3Wp9c8NUs-N5NJUrVEGJ18zCOdorOVNdZ-ymP1ZWOv8KqurGjm8eQl-kQ7Q56kez7p_cA_Tz7-mN2UV9-P_82-3JZG8rZVMuBEdZZjAWTpBOCMmoka2XXQweEYsElffzRAQzvOwqUsFZj3ptBtoaRA3Sy8V3mbrS9sX6KeqGW0Y06Pqignfo7492tmoeVKgvDtOVrh09PDjH8zjZNanTJ2MVCextyUphLACoIaQv68R_0LuToy3yFEqJhQvI1hTeUiSGlaIdtNw2sy3K1uZMqC1ePd1L3RfTh9RxbyfNhCkA2QCopP7fxpfZ_bP8A3IeeRw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wirth, Melchior</creator><creator>Zhang, Haonan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0519-4241</orcidid></search><sort><creationdate>2023</creationdate><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><author>Wirth, Melchior ; Zhang, Haonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Concavity</topic><topic>Curvature</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Matrices (mathematics)</topic><topic>Multipliers</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Semigroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirth, Melchior</creatorcontrib><creatorcontrib>Zhang, Haonan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirth, Melchior</au><au>Zhang, Haonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><addtitle>Ann Henri Poincare</addtitle><date>2023</date><risdate>2023</risdate><volume>24</volume><issue>3</issue><spage>717</spage><epage>750</epage><pages>717-750</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36950223</pmid><doi>10.1007/s00023-022-01220-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0519-4241</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-0637
ispartof Annales Henri Poincaré, 2023, Vol.24 (3), p.717-750
issn 1424-0637
1424-0661
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10024675
source SpringerNature Journals
subjects Algebra
Classical and Quantum Gravitation
Concavity
Curvature
Dynamical Systems and Ergodic Theory
Elementary Particles
Group theory
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Matrices (mathematics)
Multipliers
Original Paper
Physics
Physics and Astronomy
Quantum Field Theory
Quantum Physics
Relativity Theory
Semigroups
Theoretical
title Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature-Dimension%20Conditions%20for%20Symmetric%20Quantum%20Markov%20Semigroups&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Wirth,%20Melchior&rft.date=2023&rft.volume=24&rft.issue=3&rft.spage=717&rft.epage=750&rft.pages=717-750&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01220-x&rft_dat=%3Cproquest_pubme%3E2788158976%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788158976&rft_id=info:pmid/36950223&rfr_iscdi=true