Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups
Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension...
Gespeichert in:
Veröffentlicht in: | Annales Henri Poincaré 2023, Vol.24 (3), p.717-750 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 750 |
---|---|
container_issue | 3 |
container_start_page | 717 |
container_title | Annales Henri Poincaré |
container_volume | 24 |
creator | Wirth, Melchior Zhang, Haonan |
description | Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups. |
doi_str_mv | 10.1007/s00023-022-01220-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10024675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2788158976</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</originalsourceid><addsrcrecordid>eNp9kctO3DAUhi1UVCj0BVhUkbrpJuXEl9heoWooUAlUIdq15TjOYDqxp3Y8grevh4GBdtGVj3W-_z83hI4a-NwA8OMEAJjUgHENDcZQ3--g_YZiWkPbNm-2MeF76F1Kd1AoQeRbtEdayYqM7KOzWY4rPeVo61M3Wp9c8NUs-N5NJUrVEGJ18zCOdorOVNdZ-ymP1ZWOv8KqurGjm8eQl-kQ7Q56kez7p_cA_Tz7-mN2UV9-P_82-3JZG8rZVMuBEdZZjAWTpBOCMmoka2XXQweEYsElffzRAQzvOwqUsFZj3ptBtoaRA3Sy8V3mbrS9sX6KeqGW0Y06Pqignfo7492tmoeVKgvDtOVrh09PDjH8zjZNanTJ2MVCextyUphLACoIaQv68R_0LuToy3yFEqJhQvI1hTeUiSGlaIdtNw2sy3K1uZMqC1ePd1L3RfTh9RxbyfNhCkA2QCopP7fxpfZ_bP8A3IeeRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2788158976</pqid></control><display><type>article</type><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><source>SpringerNature Journals</source><creator>Wirth, Melchior ; Zhang, Haonan</creator><creatorcontrib>Wirth, Melchior ; Zhang, Haonan</creatorcontrib><description>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</description><identifier>ISSN: 1424-0637</identifier><identifier>EISSN: 1424-0661</identifier><identifier>DOI: 10.1007/s00023-022-01220-x</identifier><identifier>PMID: 36950223</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Classical and Quantum Gravitation ; Concavity ; Curvature ; Dynamical Systems and Ergodic Theory ; Elementary Particles ; Group theory ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Matrices (mathematics) ; Multipliers ; Original Paper ; Physics ; Physics and Astronomy ; Quantum Field Theory ; Quantum Physics ; Relativity Theory ; Semigroups ; Theoretical</subject><ispartof>Annales Henri Poincaré, 2023, Vol.24 (3), p.717-750</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022.</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</citedby><cites>FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</cites><orcidid>0000-0002-0519-4241</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00023-022-01220-x$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00023-022-01220-x$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36950223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wirth, Melchior</creatorcontrib><creatorcontrib>Zhang, Haonan</creatorcontrib><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><title>Annales Henri Poincaré</title><addtitle>Ann. Henri Poincaré</addtitle><addtitle>Ann Henri Poincare</addtitle><description>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</description><subject>Algebra</subject><subject>Classical and Quantum Gravitation</subject><subject>Concavity</subject><subject>Curvature</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Elementary Particles</subject><subject>Group theory</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Matrices (mathematics)</subject><subject>Multipliers</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Semigroups</subject><subject>Theoretical</subject><issn>1424-0637</issn><issn>1424-0661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kctO3DAUhi1UVCj0BVhUkbrpJuXEl9heoWooUAlUIdq15TjOYDqxp3Y8grevh4GBdtGVj3W-_z83hI4a-NwA8OMEAJjUgHENDcZQ3--g_YZiWkPbNm-2MeF76F1Kd1AoQeRbtEdayYqM7KOzWY4rPeVo61M3Wp9c8NUs-N5NJUrVEGJ18zCOdorOVNdZ-ymP1ZWOv8KqurGjm8eQl-kQ7Q56kez7p_cA_Tz7-mN2UV9-P_82-3JZG8rZVMuBEdZZjAWTpBOCMmoka2XXQweEYsElffzRAQzvOwqUsFZj3ptBtoaRA3Sy8V3mbrS9sX6KeqGW0Y06Pqignfo7492tmoeVKgvDtOVrh09PDjH8zjZNanTJ2MVCextyUphLACoIaQv68R_0LuToy3yFEqJhQvI1hTeUiSGlaIdtNw2sy3K1uZMqC1ePd1L3RfTh9RxbyfNhCkA2QCopP7fxpfZ_bP8A3IeeRw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wirth, Melchior</creator><creator>Zhang, Haonan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0519-4241</orcidid></search><sort><creationdate>2023</creationdate><title>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</title><author>Wirth, Melchior ; Zhang, Haonan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-9f535be228593b88454c9569bd0b0342879469bd04f0c7db404356a27dcf96c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Classical and Quantum Gravitation</topic><topic>Concavity</topic><topic>Curvature</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Elementary Particles</topic><topic>Group theory</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Matrices (mathematics)</topic><topic>Multipliers</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Semigroups</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wirth, Melchior</creatorcontrib><creatorcontrib>Zhang, Haonan</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annales Henri Poincaré</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wirth, Melchior</au><au>Zhang, Haonan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups</atitle><jtitle>Annales Henri Poincaré</jtitle><stitle>Ann. Henri Poincaré</stitle><addtitle>Ann Henri Poincare</addtitle><date>2023</date><risdate>2023</risdate><volume>24</volume><issue>3</issue><spage>717</spage><epage>750</epage><pages>717-750</pages><issn>1424-0637</issn><eissn>1424-0661</eissn><abstract>Following up on the recent work on lower Ricci curvature bounds for quantum systems, we introduce two noncommutative versions of curvature-dimension bounds for symmetric quantum Markov semigroups over matrix algebras. Under suitable such curvature-dimension conditions, we prove a family of dimension-dependent functional inequalities, a version of the Bonnet–Myers theorem and concavity of entropy power in the noncommutative setting. We also provide examples satisfying certain curvature-dimension conditions, including Schur multipliers over matrix algebras, Herz–Schur multipliers over group algebras and generalized depolarizing semigroups.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>36950223</pmid><doi>10.1007/s00023-022-01220-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0002-0519-4241</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-0637 |
ispartof | Annales Henri Poincaré, 2023, Vol.24 (3), p.717-750 |
issn | 1424-0637 1424-0661 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10024675 |
source | SpringerNature Journals |
subjects | Algebra Classical and Quantum Gravitation Concavity Curvature Dynamical Systems and Ergodic Theory Elementary Particles Group theory Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Matrices (mathematics) Multipliers Original Paper Physics Physics and Astronomy Quantum Field Theory Quantum Physics Relativity Theory Semigroups Theoretical |
title | Curvature-Dimension Conditions for Symmetric Quantum Markov Semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T01%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Curvature-Dimension%20Conditions%20for%20Symmetric%20Quantum%20Markov%20Semigroups&rft.jtitle=Annales%20Henri%20Poincar%C3%A9&rft.au=Wirth,%20Melchior&rft.date=2023&rft.volume=24&rft.issue=3&rft.spage=717&rft.epage=750&rft.pages=717-750&rft.issn=1424-0637&rft.eissn=1424-0661&rft_id=info:doi/10.1007/s00023-022-01220-x&rft_dat=%3Cproquest_pubme%3E2788158976%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2788158976&rft_id=info:pmid/36950223&rfr_iscdi=true |