The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis
Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistr...
Gespeichert in:
Veröffentlicht in: | Gigascience 2022-12, Vol.12 (1) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Gigascience |
container_volume | 12 |
creator | Udrescu, Mihai Ardelean, Sebastian Mihai Udrescu, Lucreţia |
description | Abstract
Background
Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications.
Results
We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves.
Conclusions
Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization. |
doi_str_mv | 10.1093/gigascience/giad011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giad011</oup_id><sourcerecordid>2785200967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</originalsourceid><addsrcrecordid>eNqNkc9qFTEYxYMottQ-gSADbtzcmkzm5s9KpPgPCm4quAvfJN9MU-cm12RSKW58CJ_QJzHTey1XV2aTkPP7TnI4hDxl9IxRzV-OfoRsPQaL9QyOMvaAHLe0k6uWyc8PD85H5DTna1qXlEpJ_pgccaF0yxg9Jt8vr7CxJWVsILimnzBnH8YmDg30JTioD_z68XOuFN7Eqcw-hkV0qYyNDzMmsHd3DmboIWO-86m8T43fbKvaLOqCB5y_xfSlAjDdZp-fkEcDTBlP9_sJ-fT2zeX5-9XFx3cfzl9frGwn-bxiQg_duqfQgWIaqR1kz0Er0aEWLecOaqqh19iJGhDXVlnq1KCEBlfnen5CXu18t6XfoLMY5gST2Sa_gXRrInjztxL8lRnjjWGUtlxxWh1e7B1S_Fowz2bjs8VpgoCxZNNKtW4p1UJW9Pk_6HUsqSbOhtM15VIIvRjyHWVTzDnhcP8bRs1SsDko2OwLrlPPDoPcz_ypswJnOyCW7X85_gZTpLm1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050376690</pqid></control><display><type>article</type><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</creator><creatorcontrib>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</creatorcontrib><description>Abstract
Background
Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications.
Results
We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves.
Conclusions
Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giad011</identifier><identifier>PMID: 36892110</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Big Data ; Bioinformatics ; Biological effects ; Computational Biology - methods ; Computer programs ; Data analysis ; Databases, Factual ; Databases, Pharmaceutical ; Datasets ; Drug interaction ; Drug Interactions ; Impact analysis ; Machine Learning ; Molecular biology ; Network analysis ; Pharmacology ; Standardization ; Statistical analysis ; Uncertainty</subject><ispartof>Gigascience, 2022-12, Vol.12 (1)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press GigaScience. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</citedby><cites>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</cites><orcidid>0000-0002-3084-6301 ; 0000-0003-0968-1191 ; 0000-0002-7607-9240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023830/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023830/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36892110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Udrescu, Mihai</creatorcontrib><creatorcontrib>Ardelean, Sebastian Mihai</creatorcontrib><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract
Background
Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications.
Results
We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves.
Conclusions
Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</description><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Computational Biology - methods</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Databases, Factual</subject><subject>Databases, Pharmaceutical</subject><subject>Datasets</subject><subject>Drug interaction</subject><subject>Drug Interactions</subject><subject>Impact analysis</subject><subject>Machine Learning</subject><subject>Molecular biology</subject><subject>Network analysis</subject><subject>Pharmacology</subject><subject>Standardization</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9qFTEYxYMottQ-gSADbtzcmkzm5s9KpPgPCm4quAvfJN9MU-cm12RSKW58CJ_QJzHTey1XV2aTkPP7TnI4hDxl9IxRzV-OfoRsPQaL9QyOMvaAHLe0k6uWyc8PD85H5DTna1qXlEpJ_pgccaF0yxg9Jt8vr7CxJWVsILimnzBnH8YmDg30JTioD_z68XOuFN7Eqcw-hkV0qYyNDzMmsHd3DmboIWO-86m8T43fbKvaLOqCB5y_xfSlAjDdZp-fkEcDTBlP9_sJ-fT2zeX5-9XFx3cfzl9frGwn-bxiQg_duqfQgWIaqR1kz0Er0aEWLecOaqqh19iJGhDXVlnq1KCEBlfnen5CXu18t6XfoLMY5gST2Sa_gXRrInjztxL8lRnjjWGUtlxxWh1e7B1S_Fowz2bjs8VpgoCxZNNKtW4p1UJW9Pk_6HUsqSbOhtM15VIIvRjyHWVTzDnhcP8bRs1SsDko2OwLrlPPDoPcz_ypswJnOyCW7X85_gZTpLm1</recordid><startdate>20221228</startdate><enddate>20221228</enddate><creator>Udrescu, Mihai</creator><creator>Ardelean, Sebastian Mihai</creator><creator>Udrescu, Lucreţia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3084-6301</orcidid><orcidid>https://orcid.org/0000-0003-0968-1191</orcidid><orcidid>https://orcid.org/0000-0002-7607-9240</orcidid></search><sort><creationdate>20221228</creationdate><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><author>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Computational Biology - methods</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Databases, Factual</topic><topic>Databases, Pharmaceutical</topic><topic>Datasets</topic><topic>Drug interaction</topic><topic>Drug Interactions</topic><topic>Impact analysis</topic><topic>Machine Learning</topic><topic>Molecular biology</topic><topic>Network analysis</topic><topic>Pharmacology</topic><topic>Standardization</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udrescu, Mihai</creatorcontrib><creatorcontrib>Ardelean, Sebastian Mihai</creatorcontrib><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udrescu, Mihai</au><au>Ardelean, Sebastian Mihai</au><au>Udrescu, Lucreţia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2022-12-28</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract
Background
Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications.
Results
We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves.
Conclusions
Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36892110</pmid><doi>10.1093/gigascience/giad011</doi><orcidid>https://orcid.org/0000-0002-3084-6301</orcidid><orcidid>https://orcid.org/0000-0003-0968-1191</orcidid><orcidid>https://orcid.org/0000-0002-7607-9240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-217X |
ispartof | Gigascience, 2022-12, Vol.12 (1) |
issn | 2047-217X 2047-217X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023830 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | Big Data Bioinformatics Biological effects Computational Biology - methods Computer programs Data analysis Databases, Factual Databases, Pharmaceutical Datasets Drug interaction Drug Interactions Impact analysis Machine Learning Molecular biology Network analysis Pharmacology Standardization Statistical analysis Uncertainty |
title | The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20curse%20and%20blessing%20of%20abundance%E2%80%94the%20evolution%20of%20drug%20interaction%20databases%20and%20their%20impact%20on%20drug%20network%20analysis&rft.jtitle=Gigascience&rft.au=Udrescu,%20Mihai&rft.date=2022-12-28&rft.volume=12&rft.issue=1&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giad011&rft_dat=%3Cproquest_pubme%3E2785200967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050376690&rft_id=info:pmid/36892110&rft_oup_id=10.1093/gigascience/giad011&rfr_iscdi=true |