The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis

Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gigascience 2022-12, Vol.12 (1)
Hauptverfasser: Udrescu, Mihai, Ardelean, Sebastian Mihai, Udrescu, Lucreţia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Gigascience
container_volume 12
creator Udrescu, Mihai
Ardelean, Sebastian Mihai
Udrescu, Lucreţia
description Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications. Results We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves. Conclusions Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.
doi_str_mv 10.1093/gigascience/giad011
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023830</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gigascience/giad011</oup_id><sourcerecordid>2785200967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</originalsourceid><addsrcrecordid>eNqNkc9qFTEYxYMottQ-gSADbtzcmkzm5s9KpPgPCm4quAvfJN9MU-cm12RSKW58CJ_QJzHTey1XV2aTkPP7TnI4hDxl9IxRzV-OfoRsPQaL9QyOMvaAHLe0k6uWyc8PD85H5DTna1qXlEpJ_pgccaF0yxg9Jt8vr7CxJWVsILimnzBnH8YmDg30JTioD_z68XOuFN7Eqcw-hkV0qYyNDzMmsHd3DmboIWO-86m8T43fbKvaLOqCB5y_xfSlAjDdZp-fkEcDTBlP9_sJ-fT2zeX5-9XFx3cfzl9frGwn-bxiQg_duqfQgWIaqR1kz0Er0aEWLecOaqqh19iJGhDXVlnq1KCEBlfnen5CXu18t6XfoLMY5gST2Sa_gXRrInjztxL8lRnjjWGUtlxxWh1e7B1S_Fowz2bjs8VpgoCxZNNKtW4p1UJW9Pk_6HUsqSbOhtM15VIIvRjyHWVTzDnhcP8bRs1SsDko2OwLrlPPDoPcz_ypswJnOyCW7X85_gZTpLm1</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3050376690</pqid></control><display><type>article</type><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</creator><creatorcontrib>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</creatorcontrib><description>Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications. Results We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves. Conclusions Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</description><identifier>ISSN: 2047-217X</identifier><identifier>EISSN: 2047-217X</identifier><identifier>DOI: 10.1093/gigascience/giad011</identifier><identifier>PMID: 36892110</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Big Data ; Bioinformatics ; Biological effects ; Computational Biology - methods ; Computer programs ; Data analysis ; Databases, Factual ; Databases, Pharmaceutical ; Datasets ; Drug interaction ; Drug Interactions ; Impact analysis ; Machine Learning ; Molecular biology ; Network analysis ; Pharmacology ; Standardization ; Statistical analysis ; Uncertainty</subject><ispartof>Gigascience, 2022-12, Vol.12 (1)</ispartof><rights>The Author(s) 2023. Published by Oxford University Press GigaScience. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press GigaScience.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</citedby><cites>FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</cites><orcidid>0000-0002-3084-6301 ; 0000-0003-0968-1191 ; 0000-0002-7607-9240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023830/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10023830/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36892110$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Udrescu, Mihai</creatorcontrib><creatorcontrib>Ardelean, Sebastian Mihai</creatorcontrib><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><title>Gigascience</title><addtitle>Gigascience</addtitle><description>Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications. Results We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves. Conclusions Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</description><subject>Big Data</subject><subject>Bioinformatics</subject><subject>Biological effects</subject><subject>Computational Biology - methods</subject><subject>Computer programs</subject><subject>Data analysis</subject><subject>Databases, Factual</subject><subject>Databases, Pharmaceutical</subject><subject>Datasets</subject><subject>Drug interaction</subject><subject>Drug Interactions</subject><subject>Impact analysis</subject><subject>Machine Learning</subject><subject>Molecular biology</subject><subject>Network analysis</subject><subject>Pharmacology</subject><subject>Standardization</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>2047-217X</issn><issn>2047-217X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc9qFTEYxYMottQ-gSADbtzcmkzm5s9KpPgPCm4quAvfJN9MU-cm12RSKW58CJ_QJzHTey1XV2aTkPP7TnI4hDxl9IxRzV-OfoRsPQaL9QyOMvaAHLe0k6uWyc8PD85H5DTna1qXlEpJ_pgccaF0yxg9Jt8vr7CxJWVsILimnzBnH8YmDg30JTioD_z68XOuFN7Eqcw-hkV0qYyNDzMmsHd3DmboIWO-86m8T43fbKvaLOqCB5y_xfSlAjDdZp-fkEcDTBlP9_sJ-fT2zeX5-9XFx3cfzl9frGwn-bxiQg_duqfQgWIaqR1kz0Er0aEWLecOaqqh19iJGhDXVlnq1KCEBlfnen5CXu18t6XfoLMY5gST2Sa_gXRrInjztxL8lRnjjWGUtlxxWh1e7B1S_Fowz2bjs8VpgoCxZNNKtW4p1UJW9Pk_6HUsqSbOhtM15VIIvRjyHWVTzDnhcP8bRs1SsDko2OwLrlPPDoPcz_ypswJnOyCW7X85_gZTpLm1</recordid><startdate>20221228</startdate><enddate>20221228</enddate><creator>Udrescu, Mihai</creator><creator>Ardelean, Sebastian Mihai</creator><creator>Udrescu, Lucreţia</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3084-6301</orcidid><orcidid>https://orcid.org/0000-0003-0968-1191</orcidid><orcidid>https://orcid.org/0000-0002-7607-9240</orcidid></search><sort><creationdate>20221228</creationdate><title>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</title><author>Udrescu, Mihai ; Ardelean, Sebastian Mihai ; Udrescu, Lucreţia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-169f45b0a4a819e0cf7b3a9864e96233da887fb9e46778e5c8c0d8f869ad45bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Big Data</topic><topic>Bioinformatics</topic><topic>Biological effects</topic><topic>Computational Biology - methods</topic><topic>Computer programs</topic><topic>Data analysis</topic><topic>Databases, Factual</topic><topic>Databases, Pharmaceutical</topic><topic>Datasets</topic><topic>Drug interaction</topic><topic>Drug Interactions</topic><topic>Impact analysis</topic><topic>Machine Learning</topic><topic>Molecular biology</topic><topic>Network analysis</topic><topic>Pharmacology</topic><topic>Standardization</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Udrescu, Mihai</creatorcontrib><creatorcontrib>Ardelean, Sebastian Mihai</creatorcontrib><creatorcontrib>Udrescu, Lucreţia</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gigascience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Udrescu, Mihai</au><au>Ardelean, Sebastian Mihai</au><au>Udrescu, Lucreţia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis</atitle><jtitle>Gigascience</jtitle><addtitle>Gigascience</addtitle><date>2022-12-28</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><issn>2047-217X</issn><eissn>2047-217X</eissn><abstract>Abstract Background Widespread bioinformatics applications such as drug repositioning or drug–drug interaction prediction rely on the recent advances in machine learning, complex network science, and comprehensive drug datasets comprising the latest research results in molecular biology, biochemistry, or pharmacology. The problem is that there is much uncertainty in these drug datasets—we know the drug–drug or drug–target interactions reported in the research papers, but we cannot know if the not reported interactions are absent or yet to be discovered. This uncertainty hampers the accuracy of such bioinformatics applications. Results We use complex network statistics tools and simulations of randomly inserted previously unaccounted interactions in drug–drug and drug–target interaction networks—built with data from DrugBank versions released over the plast decade—to investigate whether the abundance of new research data (included in the latest dataset versions) mitigates the uncertainty issue. Our results show that the drug–drug interaction networks built with the latest dataset versions become very dense and, therefore, almost impossible to analyze with conventional complex network methods. On the other hand, for the latest drug database versions, drug–target networks still include much uncertainty; however, the robustness of complex network analysis methods slightly improves. Conclusions Our big data analysis results pinpoint future research directions to improve the quality and practicality of drug databases for bioinformatics applications: benchmarking for drug–target interaction prediction and drug–drug interaction severity standardization.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>36892110</pmid><doi>10.1093/gigascience/giad011</doi><orcidid>https://orcid.org/0000-0002-3084-6301</orcidid><orcidid>https://orcid.org/0000-0003-0968-1191</orcidid><orcidid>https://orcid.org/0000-0002-7607-9240</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-217X
ispartof Gigascience, 2022-12, Vol.12 (1)
issn 2047-217X
2047-217X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10023830
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central
subjects Big Data
Bioinformatics
Biological effects
Computational Biology - methods
Computer programs
Data analysis
Databases, Factual
Databases, Pharmaceutical
Datasets
Drug interaction
Drug Interactions
Impact analysis
Machine Learning
Molecular biology
Network analysis
Pharmacology
Standardization
Statistical analysis
Uncertainty
title The curse and blessing of abundance—the evolution of drug interaction databases and their impact on drug network analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20curse%20and%20blessing%20of%20abundance%E2%80%94the%20evolution%20of%20drug%20interaction%20databases%20and%20their%20impact%20on%20drug%20network%20analysis&rft.jtitle=Gigascience&rft.au=Udrescu,%20Mihai&rft.date=2022-12-28&rft.volume=12&rft.issue=1&rft.issn=2047-217X&rft.eissn=2047-217X&rft_id=info:doi/10.1093/gigascience/giad011&rft_dat=%3Cproquest_pubme%3E2785200967%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3050376690&rft_id=info:pmid/36892110&rft_oup_id=10.1093/gigascience/giad011&rfr_iscdi=true