Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology
Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the el...
Gespeichert in:
Veröffentlicht in: | Journal of neural engineering 2023-03, Vol.20 (2), p.26019 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 26019 |
container_title | Journal of neural engineering |
container_volume | 20 |
creator | Letner, Joseph G Patel, Paras R Hsieh, Jung-Chien Smith Flores, Israel M della Valle, Elena Walker, Logan A Weiland, James D Chestek, Cynthia A Cai, Dawen |
description | Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.
Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8
m diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50
m radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.
Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6
m,X-± S) in layer V motor cortex.
Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting. |
doi_str_mv | 10.1088/1741-2552/acbf78 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10022369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2780766224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-170077419745a2f2d6431c1922b42421ce88ef360f39351becba2c965ed661093</originalsourceid><addsrcrecordid>eNp1kU9v1DAQxS0EoqVw54R8g0NDbSexkxNCFQWkSnCAs-U_461XXjvYScV-Ez4ujra7AglOtjy_98YzD6GXlLylZBiuqOhow_qeXSmjnRgeofPT0-PTnZMz9KyULSEtFSN5is5aPnQDF-M5-vU1lbmBn1NQccZTTs4HHzc4OVwWbSCEJajcFKMCYKOyThE7ryFjH-esTMqzrzUMAcyck4WCVbRVm3Naol2tIiw5xYIhKh1qfVepY48M1cGCPeqnu33xKaTN_jl64lQo8OLhvEDfbz58u_7U3H75-Pn6_W1jOs7nhgpCRB1zFF2vmGOWdy01dGRMd6xj1MAwgGs5ce3Y9lSD0YqZkfdgOadkbC_Qu4PvtOgdWAPrWEFO2e9U3sukvPy7Ev2d3KR7SQlhrOWrw5sHh5x-LFBmufNl3ZyKkJYimRiI4JyxrqLkgJqcSsngTn0okWuico1MrvHJQ6JV8urP_50Exwgr8PoA-DTJbVpyrOuS2wiSEckkYZzQUU7WVfLyH-R_O_8GUHK9JQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2780766224</pqid></control><display><type>article</type><title>Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Letner, Joseph G ; Patel, Paras R ; Hsieh, Jung-Chien ; Smith Flores, Israel M ; della Valle, Elena ; Walker, Logan A ; Weiland, James D ; Chestek, Cynthia A ; Cai, Dawen</creator><creatorcontrib>Letner, Joseph G ; Patel, Paras R ; Hsieh, Jung-Chien ; Smith Flores, Israel M ; della Valle, Elena ; Walker, Logan A ; Weiland, James D ; Chestek, Cynthia A ; Cai, Dawen</creatorcontrib><description>Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.
Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8
m diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50
m radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.
Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6
m,X-± S) in layer V motor cortex.
Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.</description><identifier>ISSN: 1741-2560</identifier><identifier>EISSN: 1741-2552</identifier><identifier>DOI: 10.1088/1741-2552/acbf78</identifier><identifier>PMID: 36848679</identifier><identifier>CODEN: JNEOBH</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; Carbon Fiber ; Cerebral Cortex - physiology ; Electrodes ; Electrodes, Implanted ; electrophysiological modeling ; Electrophysiology ; immunohistochemistry ; intracortical electrodes ; Male ; Microelectrodes ; motor cortex ; neural probes ; neuron density ; Neurons - physiology ; Rats</subject><ispartof>Journal of neural engineering, 2023-03, Vol.20 (2), p.26019</ispartof><rights>2023 The Author(s). Published by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><rights>2023 The Author(s). Published by IOP Publishing Ltd 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-170077419745a2f2d6431c1922b42421ce88ef360f39351becba2c965ed661093</citedby><cites>FETCH-LOGICAL-c466t-170077419745a2f2d6431c1922b42421ce88ef360f39351becba2c965ed661093</cites><orcidid>0000-0001-9889-5380 ; 0000-0001-5246-688X ; 0000-0001-8874-7982 ; 0000-0003-4471-2061 ; 0000-0001-6146-718X ; 0000-0002-5378-3315 ; 0000-0003-3453-9074 ; 0000-0001-6584-6523 ; 0000-0002-9671-7051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1741-2552/acbf78/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36848679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Letner, Joseph G</creatorcontrib><creatorcontrib>Patel, Paras R</creatorcontrib><creatorcontrib>Hsieh, Jung-Chien</creatorcontrib><creatorcontrib>Smith Flores, Israel M</creatorcontrib><creatorcontrib>della Valle, Elena</creatorcontrib><creatorcontrib>Walker, Logan A</creatorcontrib><creatorcontrib>Weiland, James D</creatorcontrib><creatorcontrib>Chestek, Cynthia A</creatorcontrib><creatorcontrib>Cai, Dawen</creatorcontrib><title>Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology</title><title>Journal of neural engineering</title><addtitle>JNE</addtitle><addtitle>J. Neural Eng</addtitle><description>Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.
Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8
m diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50
m radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.
Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6
m,X-± S) in layer V motor cortex.
Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.</description><subject>Animals</subject><subject>Carbon Fiber</subject><subject>Cerebral Cortex - physiology</subject><subject>Electrodes</subject><subject>Electrodes, Implanted</subject><subject>electrophysiological modeling</subject><subject>Electrophysiology</subject><subject>immunohistochemistry</subject><subject>intracortical electrodes</subject><subject>Male</subject><subject>Microelectrodes</subject><subject>motor cortex</subject><subject>neural probes</subject><subject>neuron density</subject><subject>Neurons - physiology</subject><subject>Rats</subject><issn>1741-2560</issn><issn>1741-2552</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>EIF</sourceid><recordid>eNp1kU9v1DAQxS0EoqVw54R8g0NDbSexkxNCFQWkSnCAs-U_461XXjvYScV-Ez4ujra7AglOtjy_98YzD6GXlLylZBiuqOhow_qeXSmjnRgeofPT0-PTnZMz9KyULSEtFSN5is5aPnQDF-M5-vU1lbmBn1NQccZTTs4HHzc4OVwWbSCEJajcFKMCYKOyThE7ryFjH-esTMqzrzUMAcyck4WCVbRVm3Naol2tIiw5xYIhKh1qfVepY48M1cGCPeqnu33xKaTN_jl64lQo8OLhvEDfbz58u_7U3H75-Pn6_W1jOs7nhgpCRB1zFF2vmGOWdy01dGRMd6xj1MAwgGs5ce3Y9lSD0YqZkfdgOadkbC_Qu4PvtOgdWAPrWEFO2e9U3sukvPy7Ev2d3KR7SQlhrOWrw5sHh5x-LFBmufNl3ZyKkJYimRiI4JyxrqLkgJqcSsngTn0okWuico1MrvHJQ6JV8urP_50Exwgr8PoA-DTJbVpyrOuS2wiSEckkYZzQUU7WVfLyH-R_O_8GUHK9JQ</recordid><startdate>20230317</startdate><enddate>20230317</enddate><creator>Letner, Joseph G</creator><creator>Patel, Paras R</creator><creator>Hsieh, Jung-Chien</creator><creator>Smith Flores, Israel M</creator><creator>della Valle, Elena</creator><creator>Walker, Logan A</creator><creator>Weiland, James D</creator><creator>Chestek, Cynthia A</creator><creator>Cai, Dawen</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9889-5380</orcidid><orcidid>https://orcid.org/0000-0001-5246-688X</orcidid><orcidid>https://orcid.org/0000-0001-8874-7982</orcidid><orcidid>https://orcid.org/0000-0003-4471-2061</orcidid><orcidid>https://orcid.org/0000-0001-6146-718X</orcidid><orcidid>https://orcid.org/0000-0002-5378-3315</orcidid><orcidid>https://orcid.org/0000-0003-3453-9074</orcidid><orcidid>https://orcid.org/0000-0001-6584-6523</orcidid><orcidid>https://orcid.org/0000-0002-9671-7051</orcidid></search><sort><creationdate>20230317</creationdate><title>Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology</title><author>Letner, Joseph G ; Patel, Paras R ; Hsieh, Jung-Chien ; Smith Flores, Israel M ; della Valle, Elena ; Walker, Logan A ; Weiland, James D ; Chestek, Cynthia A ; Cai, Dawen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-170077419745a2f2d6431c1922b42421ce88ef360f39351becba2c965ed661093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Animals</topic><topic>Carbon Fiber</topic><topic>Cerebral Cortex - physiology</topic><topic>Electrodes</topic><topic>Electrodes, Implanted</topic><topic>electrophysiological modeling</topic><topic>Electrophysiology</topic><topic>immunohistochemistry</topic><topic>intracortical electrodes</topic><topic>Male</topic><topic>Microelectrodes</topic><topic>motor cortex</topic><topic>neural probes</topic><topic>neuron density</topic><topic>Neurons - physiology</topic><topic>Rats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Letner, Joseph G</creatorcontrib><creatorcontrib>Patel, Paras R</creatorcontrib><creatorcontrib>Hsieh, Jung-Chien</creatorcontrib><creatorcontrib>Smith Flores, Israel M</creatorcontrib><creatorcontrib>della Valle, Elena</creatorcontrib><creatorcontrib>Walker, Logan A</creatorcontrib><creatorcontrib>Weiland, James D</creatorcontrib><creatorcontrib>Chestek, Cynthia A</creatorcontrib><creatorcontrib>Cai, Dawen</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neural engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Letner, Joseph G</au><au>Patel, Paras R</au><au>Hsieh, Jung-Chien</au><au>Smith Flores, Israel M</au><au>della Valle, Elena</au><au>Walker, Logan A</au><au>Weiland, James D</au><au>Chestek, Cynthia A</au><au>Cai, Dawen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology</atitle><jtitle>Journal of neural engineering</jtitle><stitle>JNE</stitle><addtitle>J. Neural Eng</addtitle><date>2023-03-17</date><risdate>2023</risdate><volume>20</volume><issue>2</issue><spage>26019</spage><pages>26019-</pages><issn>1741-2560</issn><eissn>1741-2552</eissn><coden>JNEOBH</coden><abstract>Characterizing the relationship between neuron spiking and the signals that electrodes record is vital to defining the neural circuits driving brain function and informing clinical brain-machine interface design. However, high electrode biocompatibility and precisely localizing neurons around the electrodes are critical to defining this relationship.
Here, we demonstrate consistent localization of the recording site tips of subcellular-scale (6.8
m diameter) carbon fiber electrodes and the positions of surrounding neurons. We implanted male rats with carbon fiber electrode arrays for 6 or 12+ weeks targeting layer V motor cortex. After explanting the arrays, we immunostained the implant site and localized putative recording site tips with subcellular-cellular resolution. We then 3D segmented neuron somata within a 50
m radius from implanted tips to measure neuron positions and health and compare to healthy cortex with symmetric stereotaxic coordinates.
Immunostaining of astrocyte, microglia, and neuron markers confirmed that overall tissue health was indicative of high biocompatibility near the tips. While neurons near implanted carbon fibers were stretched, their number and distribution were similar to hypothetical fibers placed in healthy contralateral brain. Such similar neuron distributions suggest that these minimally invasive electrodes demonstrate the potential to sample naturalistic neural populations. This motivated the prediction of spikes produced by nearby neurons using a simple point source model fit using recorded electrophysiology and the mean positions of the nearest neurons observed in histology. Comparing spike amplitudes suggests that the radius at which single units can be distinguished from others is near the fourth closest neuron (30.7 ± 4.6
m,X-± S) in layer V motor cortex.
Collectively, these data and simulations provide the first direct evidence that neuron placement in the immediate vicinity of the recording site influences how many spike clusters can be reliably identified by spike sorting.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>36848679</pmid><doi>10.1088/1741-2552/acbf78</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9889-5380</orcidid><orcidid>https://orcid.org/0000-0001-5246-688X</orcidid><orcidid>https://orcid.org/0000-0001-8874-7982</orcidid><orcidid>https://orcid.org/0000-0003-4471-2061</orcidid><orcidid>https://orcid.org/0000-0001-6146-718X</orcidid><orcidid>https://orcid.org/0000-0002-5378-3315</orcidid><orcidid>https://orcid.org/0000-0003-3453-9074</orcidid><orcidid>https://orcid.org/0000-0001-6584-6523</orcidid><orcidid>https://orcid.org/0000-0002-9671-7051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1741-2560 |
ispartof | Journal of neural engineering, 2023-03, Vol.20 (2), p.26019 |
issn | 1741-2560 1741-2552 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10022369 |
source | MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link |
subjects | Animals Carbon Fiber Cerebral Cortex - physiology Electrodes Electrodes, Implanted electrophysiological modeling Electrophysiology immunohistochemistry intracortical electrodes Male Microelectrodes motor cortex neural probes neuron density Neurons - physiology Rats |
title | Post-explant profiling of subcellular-scale carbon fiber intracortical electrodes and surrounding neurons enables modeling of recorded electrophysiology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T21%3A33%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Post-explant%20profiling%20of%20subcellular-scale%20carbon%20fiber%20intracortical%20electrodes%20and%20surrounding%20neurons%20enables%20modeling%20of%20recorded%20electrophysiology&rft.jtitle=Journal%20of%20neural%20engineering&rft.au=Letner,%20Joseph%20G&rft.date=2023-03-17&rft.volume=20&rft.issue=2&rft.spage=26019&rft.pages=26019-&rft.issn=1741-2560&rft.eissn=1741-2552&rft.coden=JNEOBH&rft_id=info:doi/10.1088/1741-2552/acbf78&rft_dat=%3Cproquest_pubme%3E2780766224%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2780766224&rft_id=info:pmid/36848679&rfr_iscdi=true |