Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst

Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2023-03, Vol.15 (10), p.13205-13218
Hauptverfasser: Sakakibara, Noritaka, Shizuno, Mitsuhiko, Kanazawa, Tomoki, Kato, Kosaku, Yamakata, Akira, Nozawa, Shunsuke, Ito, Tsuyohito, Terashima, Kazuo, Maeda, Kazuhiko, Tamaki, Yusuke, Ishitani, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13218
container_issue 10
container_start_page 13205
container_title ACS applied materials & interfaces
container_volume 15
creator Sakakibara, Noritaka
Shizuno, Mitsuhiko
Kanazawa, Tomoki
Kato, Kosaku
Yamakata, Akira
Nozawa, Shunsuke
Ito, Tsuyohito
Terashima, Kazuo
Maeda, Kazuhiko
Tamaki, Yusuke
Ishitani, Osamu
description Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru­(II)–Ru­(II) binuclear complex (RuRu′). This plasma treatment enabled the “surface-specific” introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu′ enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu′ used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu′ under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.
doi_str_mv 10.1021/acsami.3c00955
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10020964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2781211879</sourcerecordid><originalsourceid>FETCH-LOGICAL-a363t-e0fcc9b8e8749f388e00abd51e1a9facdb13c3430225449c24e65960d99c02803</originalsourceid><addsrcrecordid>eNpVkU1v1DAQhi0EoqVw5ewjQkrxVxL7hNBS2kqFViycrYkzIa6SODhO0f4q_iLe7grBaT7emWc0egl5zdk5Z4K_A7fA6M-lY8yU5RNyyo1ShRalePo3V-qEvFiWe8YqKVj5nJzISpc1r-Up-b1dYwcOi-2Mznfe0c-h3UdIPkw0dPQywtz7lJUNxCb3vvgUfYu02dG7AZYRaBcivZh6mBy29OMaofGDTzsKU0u3OKBL_mFfZ9pdH1LIcBh2j8hbQb9iu7rHa7986inQ7TpHGEPeWweI_64s6SV51sGw4KtjPCPfP11821wVN7eX15sPNwXISqYCWeecaTTqWplOao2MQdOWHDmY_G_bcOmkkkyIUinjhMKqNBVrjXFMaCbPyPsDd16bEVuHU4ow2Dn6EeLOBvD2f2Xyvf0RHixnTDBTqUx4cyTE8HPFJdnRLw6HASYM62JFrbngXNcmj749jGY37X1Y45RfyyS7t9geLLZHi-Uf2LmeAA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2781211879</pqid></control><display><type>article</type><title>Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst</title><source>ACS Publications</source><creator>Sakakibara, Noritaka ; Shizuno, Mitsuhiko ; Kanazawa, Tomoki ; Kato, Kosaku ; Yamakata, Akira ; Nozawa, Shunsuke ; Ito, Tsuyohito ; Terashima, Kazuo ; Maeda, Kazuhiko ; Tamaki, Yusuke ; Ishitani, Osamu</creator><creatorcontrib>Sakakibara, Noritaka ; Shizuno, Mitsuhiko ; Kanazawa, Tomoki ; Kato, Kosaku ; Yamakata, Akira ; Nozawa, Shunsuke ; Ito, Tsuyohito ; Terashima, Kazuo ; Maeda, Kazuhiko ; Tamaki, Yusuke ; Ishitani, Osamu</creatorcontrib><description>Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru­(II)–Ru­(II) binuclear complex (RuRu′). This plasma treatment enabled the “surface-specific” introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu′ enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu′ used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu′ under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.3c00955</identifier><identifier>PMID: 36857173</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2023-03, Vol.15 (10), p.13205-13218</ispartof><rights>2023 The Authors. Published by American Chemical Society</rights><rights>2023 The Authors. Published by American Chemical Society 2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3910-6553 ; 0000-0003-4977-6849 ; 0000-0003-3179-7588 ; 0000-0001-9557-7854 ; 0000-0001-7245-8318 ; 0000-0002-9977-7439 ; 0000-0003-4432-0025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.3c00955$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.3c00955$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids></links><search><creatorcontrib>Sakakibara, Noritaka</creatorcontrib><creatorcontrib>Shizuno, Mitsuhiko</creatorcontrib><creatorcontrib>Kanazawa, Tomoki</creatorcontrib><creatorcontrib>Kato, Kosaku</creatorcontrib><creatorcontrib>Yamakata, Akira</creatorcontrib><creatorcontrib>Nozawa, Shunsuke</creatorcontrib><creatorcontrib>Ito, Tsuyohito</creatorcontrib><creatorcontrib>Terashima, Kazuo</creatorcontrib><creatorcontrib>Maeda, Kazuhiko</creatorcontrib><creatorcontrib>Tamaki, Yusuke</creatorcontrib><creatorcontrib>Ishitani, Osamu</creatorcontrib><title>Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru­(II)–Ru­(II) binuclear complex (RuRu′). This plasma treatment enabled the “surface-specific” introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu′ enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu′ used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu′ under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpVkU1v1DAQhi0EoqVw5ewjQkrxVxL7hNBS2kqFViycrYkzIa6SODhO0f4q_iLe7grBaT7emWc0egl5zdk5Z4K_A7fA6M-lY8yU5RNyyo1ShRalePo3V-qEvFiWe8YqKVj5nJzISpc1r-Up-b1dYwcOi-2Mznfe0c-h3UdIPkw0dPQywtz7lJUNxCb3vvgUfYu02dG7AZYRaBcivZh6mBy29OMaofGDTzsKU0u3OKBL_mFfZ9pdH1LIcBh2j8hbQb9iu7rHa7986inQ7TpHGEPeWweI_64s6SV51sGw4KtjPCPfP11821wVN7eX15sPNwXISqYCWeecaTTqWplOao2MQdOWHDmY_G_bcOmkkkyIUinjhMKqNBVrjXFMaCbPyPsDd16bEVuHU4ow2Dn6EeLOBvD2f2Xyvf0RHixnTDBTqUx4cyTE8HPFJdnRLw6HASYM62JFrbngXNcmj749jGY37X1Y45RfyyS7t9geLLZHi-Uf2LmeAA</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Sakakibara, Noritaka</creator><creator>Shizuno, Mitsuhiko</creator><creator>Kanazawa, Tomoki</creator><creator>Kato, Kosaku</creator><creator>Yamakata, Akira</creator><creator>Nozawa, Shunsuke</creator><creator>Ito, Tsuyohito</creator><creator>Terashima, Kazuo</creator><creator>Maeda, Kazuhiko</creator><creator>Tamaki, Yusuke</creator><creator>Ishitani, Osamu</creator><general>American Chemical Society</general><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3910-6553</orcidid><orcidid>https://orcid.org/0000-0003-4977-6849</orcidid><orcidid>https://orcid.org/0000-0003-3179-7588</orcidid><orcidid>https://orcid.org/0000-0001-9557-7854</orcidid><orcidid>https://orcid.org/0000-0001-7245-8318</orcidid><orcidid>https://orcid.org/0000-0002-9977-7439</orcidid><orcidid>https://orcid.org/0000-0003-4432-0025</orcidid></search><sort><creationdate>20230315</creationdate><title>Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst</title><author>Sakakibara, Noritaka ; Shizuno, Mitsuhiko ; Kanazawa, Tomoki ; Kato, Kosaku ; Yamakata, Akira ; Nozawa, Shunsuke ; Ito, Tsuyohito ; Terashima, Kazuo ; Maeda, Kazuhiko ; Tamaki, Yusuke ; Ishitani, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a363t-e0fcc9b8e8749f388e00abd51e1a9facdb13c3430225449c24e65960d99c02803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sakakibara, Noritaka</creatorcontrib><creatorcontrib>Shizuno, Mitsuhiko</creatorcontrib><creatorcontrib>Kanazawa, Tomoki</creatorcontrib><creatorcontrib>Kato, Kosaku</creatorcontrib><creatorcontrib>Yamakata, Akira</creatorcontrib><creatorcontrib>Nozawa, Shunsuke</creatorcontrib><creatorcontrib>Ito, Tsuyohito</creatorcontrib><creatorcontrib>Terashima, Kazuo</creatorcontrib><creatorcontrib>Maeda, Kazuhiko</creatorcontrib><creatorcontrib>Tamaki, Yusuke</creatorcontrib><creatorcontrib>Ishitani, Osamu</creatorcontrib><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sakakibara, Noritaka</au><au>Shizuno, Mitsuhiko</au><au>Kanazawa, Tomoki</au><au>Kato, Kosaku</au><au>Yamakata, Akira</au><au>Nozawa, Shunsuke</au><au>Ito, Tsuyohito</au><au>Terashima, Kazuo</au><au>Maeda, Kazuhiko</au><au>Tamaki, Yusuke</au><au>Ishitani, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2023-03-15</date><risdate>2023</risdate><volume>15</volume><issue>10</issue><spage>13205</spage><epage>13218</epage><pages>13205-13218</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Photocatalytic CO2 reduction is in high demand for sustainable energy management. Hybrid photocatalysts combining semiconductors with supramolecular photocatalysts represent a powerful strategy for constructing visible-light-driven CO2 reduction systems with strong oxidation power. Here, we demonstrate the novel effects of plasma surface modification of graphitic carbon nitride (C3N4), which is an organic semiconductor, to achieve better affinity and electron transfer at the interface of a hybrid photocatalyst consisting of C3N4 and a Ru­(II)–Ru­(II) binuclear complex (RuRu′). This plasma treatment enabled the “surface-specific” introduction of oxygen functional groups via the formation of a carbon layer, which worked as active sites for adsorbing metal-complex molecules with methyl phosphonic-acid anchoring groups onto the plasma-modified surface of C3N4. Upon photocatalytic CO2 reduction with the hybrid under visible-light irradiation, the plasma-surface-modified C3N4 with RuRu′ enhanced the durability of HCOOH production by three times compared to that achieved when using a nonmodified system. The high selectivity of HCOOH production against byproduct evolution (H2 and CO) was improved, and the turnover number of HCOOH production based on the RuRu′ used reached 50 000, which is the highest among the metal-complex/semiconductor hybrid systems reported thus far. The improved activity is mainly attributed to the promotion of electron transfer from C3N4 to RuRu′ under light irradiation via the accumulation of electrons trapped in deep defect sites on the plasma-modified surface of C3N4.</abstract><pub>American Chemical Society</pub><pmid>36857173</pmid><doi>10.1021/acsami.3c00955</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3910-6553</orcidid><orcidid>https://orcid.org/0000-0003-4977-6849</orcidid><orcidid>https://orcid.org/0000-0003-3179-7588</orcidid><orcidid>https://orcid.org/0000-0001-9557-7854</orcidid><orcidid>https://orcid.org/0000-0001-7245-8318</orcidid><orcidid>https://orcid.org/0000-0002-9977-7439</orcidid><orcidid>https://orcid.org/0000-0003-4432-0025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2023-03, Vol.15 (10), p.13205-13218
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10020964
source ACS Publications
subjects Energy, Environmental, and Catalysis Applications
title Surface-Specific Modification of Graphitic Carbon Nitride by Plasma for Enhanced Durability and Selectivity of Photocatalytic CO2 Reduction with a Supramolecular Photocatalyst
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Specific%20Modification%20of%20Graphitic%20Carbon%20Nitride%20by%20Plasma%20for%20Enhanced%20Durability%20and%20Selectivity%20of%20Photocatalytic%20CO2%20Reduction%20with%20a%20Supramolecular%20Photocatalyst&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Sakakibara,%20Noritaka&rft.date=2023-03-15&rft.volume=15&rft.issue=10&rft.spage=13205&rft.epage=13218&rft.pages=13205-13218&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.3c00955&rft_dat=%3Cproquest_pubme%3E2781211879%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2781211879&rft_id=info:pmid/36857173&rfr_iscdi=true