Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study
Background Rapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the...
Gespeichert in:
Veröffentlicht in: | Journal of Applied Clinical Medical Physics 2023-03, Vol.24 (3), p.e13909-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | e13909 |
container_title | Journal of Applied Clinical Medical Physics |
container_volume | 24 |
creator | Blake, Samuel J. Dillon, Owen Byrne, Hilary L. O'Brien, Ricky T. |
description | Background
Rapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the detrimental effects of respiratory motion on treatment quality.
Purpose
To demonstrate the potential for thoracic 4DCBCT reconstruction using projection data that was simulated using a clinical rapid 3DCBCT acquisition protocol.
Methods
We simulated conventional (1320 projections over 4 min) and rapid (491 projections over 16.6 s) CBCT acquisitions using 4D computed tomography (CT) volumes of 14 lung cancer patients. Conventional acquisition data were reconstructed using the 4D Feldkamp‐Davis‐Kress (FDK) algorithm. Rapid acquisition data were reconstructed using 3DFDK, 4DFDK, and Motion‐Compensated FDK (MCFDK). Image quality was evaluated using Contrast‐to‐Noise Ratio (CNR), Tissue Interface Width (TIW), Root‐Mean‐Square Error (RMSE), and Structural SIMilarity (SSIM).
Results
The conventional acquisition 4DFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.96, 8.02 mm, 83.5, and 0.54, respectively. The rapid acquisition 3DFDK reconstructions had median CNR, TIW, RMSE, and SSIM of 2.99, 13.6 mm, 112, and 0.44 respectively. The rapid acquisition MCFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.98, 10.2 mm, 103, and 0.46, respectively. Rapid acquisition 4DFDK reconstruction quality was insufficient for any practical use due to sparse angular projection sampling.
Conclusions
Results suggest that 4D motion‐compensated reconstruction of rapid acquisition thoracic CBCT data are feasible with image quality approaching conventional acquisition CBCT data reconstructed using standard 4DFDK. |
doi_str_mv | 10.1002/acm2.13909 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A755345218</galeid><sourcerecordid>A755345218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4759-c8fa2b33771a99174322df3ac6d314ac640290a69a99be475cac5e8f62c0d6ec3</originalsourceid><addsrcrecordid>eNp9ks1u1DAQxy1ERcvChQdAlrggpF38kTgJF7Ra8VGpiEs5W7OOs-sqthc7Ae2tj8Az8iRMSFu1HDiNNfOb_3yZkBecrThj4i0YL1ZcNqx5RM54KdSyaXjx-N77lDzN-YoxzmtZPyGnUqmaVUVxRq4v9zGBcYb6OLgYfl__MtEfbMgw2JaaGCy6thY8nfzj5Byij7sEh_2RukDH0NpEBaPZIt1mGgMF2kEeMDHFAQYXdrR3Acw7uqbZ-bGHqRTNw9gen5GTDvpsn9_YBfn28cPl5vPy4uun8836YmmKqmyWpu5AbKWsKg44UVVIIdpOglGt5AWagomGgWowurWYYsCUtu6UMKxV1sgFeT_rHsatt62xYUjQ60NyHtJRR3D6YSS4vd7FHxpXzGtVSlR4faOQ4vfR5kF7l43tewg2jlmLStVCSlYyRF_9g17FMQWcD6m64rwRzSS4mqkd9Fa70EUsjH1Da72bNt859K-rspRFKfB0C_JmTjAp5pxsd9c-Z1OfQk9fQf_9Cgi_vD_wHXp7ewT4DPzEMsf_SOn15ouYRf8AMEbChg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787119293</pqid></control><display><type>article</type><title>Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Blake, Samuel J. ; Dillon, Owen ; Byrne, Hilary L. ; O'Brien, Ricky T.</creator><creatorcontrib>Blake, Samuel J. ; Dillon, Owen ; Byrne, Hilary L. ; O'Brien, Ricky T.</creatorcontrib><description>Background
Rapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the detrimental effects of respiratory motion on treatment quality.
Purpose
To demonstrate the potential for thoracic 4DCBCT reconstruction using projection data that was simulated using a clinical rapid 3DCBCT acquisition protocol.
Methods
We simulated conventional (1320 projections over 4 min) and rapid (491 projections over 16.6 s) CBCT acquisitions using 4D computed tomography (CT) volumes of 14 lung cancer patients. Conventional acquisition data were reconstructed using the 4D Feldkamp‐Davis‐Kress (FDK) algorithm. Rapid acquisition data were reconstructed using 3DFDK, 4DFDK, and Motion‐Compensated FDK (MCFDK). Image quality was evaluated using Contrast‐to‐Noise Ratio (CNR), Tissue Interface Width (TIW), Root‐Mean‐Square Error (RMSE), and Structural SIMilarity (SSIM).
Results
The conventional acquisition 4DFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.96, 8.02 mm, 83.5, and 0.54, respectively. The rapid acquisition 3DFDK reconstructions had median CNR, TIW, RMSE, and SSIM of 2.99, 13.6 mm, 112, and 0.44 respectively. The rapid acquisition MCFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.98, 10.2 mm, 103, and 0.46, respectively. Rapid acquisition 4DFDK reconstruction quality was insufficient for any practical use due to sparse angular projection sampling.
Conclusions
Results suggest that 4D motion‐compensated reconstruction of rapid acquisition thoracic CBCT data are feasible with image quality approaching conventional acquisition CBCT data reconstructed using standard 4DFDK.</description><identifier>ISSN: 1526-9914</identifier><identifier>EISSN: 1526-9914</identifier><identifier>DOI: 10.1002/acm2.13909</identifier><identifier>PMID: 36680744</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Algorithms ; Cancer ; Computer Simulation ; Cone-Beam Computed Tomography - methods ; cone‐beam computed tomography ; CT imaging ; Diaphragm (Anatomy) ; Four-Dimensional Computed Tomography - methods ; Humans ; Image Processing, Computer-Assisted - methods ; image reconstruction ; Lung cancer ; Motion ; organ motion ; Phantoms, Imaging ; Radiation therapy ; radiotherapy ; Simulation ; Technical Note</subject><ispartof>Journal of Applied Clinical Medical Physics, 2023-03, Vol.24 (3), p.e13909-n/a</ispartof><rights>2023 The Authors. published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.</rights><rights>2023 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine.</rights><rights>COPYRIGHT 2023 John Wiley & Sons, Inc.</rights><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4759-c8fa2b33771a99174322df3ac6d314ac640290a69a99be475cac5e8f62c0d6ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018653/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018653/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,1418,11566,27928,27929,45578,45579,46056,46480,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36680744$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Blake, Samuel J.</creatorcontrib><creatorcontrib>Dillon, Owen</creatorcontrib><creatorcontrib>Byrne, Hilary L.</creatorcontrib><creatorcontrib>O'Brien, Ricky T.</creatorcontrib><title>Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study</title><title>Journal of Applied Clinical Medical Physics</title><addtitle>J Appl Clin Med Phys</addtitle><description>Background
Rapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the detrimental effects of respiratory motion on treatment quality.
Purpose
To demonstrate the potential for thoracic 4DCBCT reconstruction using projection data that was simulated using a clinical rapid 3DCBCT acquisition protocol.
Methods
We simulated conventional (1320 projections over 4 min) and rapid (491 projections over 16.6 s) CBCT acquisitions using 4D computed tomography (CT) volumes of 14 lung cancer patients. Conventional acquisition data were reconstructed using the 4D Feldkamp‐Davis‐Kress (FDK) algorithm. Rapid acquisition data were reconstructed using 3DFDK, 4DFDK, and Motion‐Compensated FDK (MCFDK). Image quality was evaluated using Contrast‐to‐Noise Ratio (CNR), Tissue Interface Width (TIW), Root‐Mean‐Square Error (RMSE), and Structural SIMilarity (SSIM).
Results
The conventional acquisition 4DFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.96, 8.02 mm, 83.5, and 0.54, respectively. The rapid acquisition 3DFDK reconstructions had median CNR, TIW, RMSE, and SSIM of 2.99, 13.6 mm, 112, and 0.44 respectively. The rapid acquisition MCFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.98, 10.2 mm, 103, and 0.46, respectively. Rapid acquisition 4DFDK reconstruction quality was insufficient for any practical use due to sparse angular projection sampling.
Conclusions
Results suggest that 4D motion‐compensated reconstruction of rapid acquisition thoracic CBCT data are feasible with image quality approaching conventional acquisition CBCT data reconstructed using standard 4DFDK.</description><subject>Algorithms</subject><subject>Cancer</subject><subject>Computer Simulation</subject><subject>Cone-Beam Computed Tomography - methods</subject><subject>cone‐beam computed tomography</subject><subject>CT imaging</subject><subject>Diaphragm (Anatomy)</subject><subject>Four-Dimensional Computed Tomography - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>image reconstruction</subject><subject>Lung cancer</subject><subject>Motion</subject><subject>organ motion</subject><subject>Phantoms, Imaging</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>Simulation</subject><subject>Technical Note</subject><issn>1526-9914</issn><issn>1526-9914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ks1u1DAQxy1ERcvChQdAlrggpF38kTgJF7Ra8VGpiEs5W7OOs-sqthc7Ae2tj8Az8iRMSFu1HDiNNfOb_3yZkBecrThj4i0YL1ZcNqx5RM54KdSyaXjx-N77lDzN-YoxzmtZPyGnUqmaVUVxRq4v9zGBcYb6OLgYfl__MtEfbMgw2JaaGCy6thY8nfzj5Byij7sEh_2RukDH0NpEBaPZIt1mGgMF2kEeMDHFAQYXdrR3Acw7uqbZ-bGHqRTNw9gen5GTDvpsn9_YBfn28cPl5vPy4uun8836YmmKqmyWpu5AbKWsKg44UVVIIdpOglGt5AWagomGgWowurWYYsCUtu6UMKxV1sgFeT_rHsatt62xYUjQ60NyHtJRR3D6YSS4vd7FHxpXzGtVSlR4faOQ4vfR5kF7l43tewg2jlmLStVCSlYyRF_9g17FMQWcD6m64rwRzSS4mqkd9Fa70EUsjH1Da72bNt859K-rspRFKfB0C_JmTjAp5pxsd9c-Z1OfQk9fQf_9Cgi_vD_wHXp7ewT4DPzEMsf_SOn15ouYRf8AMEbChg</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Blake, Samuel J.</creator><creator>Dillon, Owen</creator><creator>Byrne, Hilary L.</creator><creator>O'Brien, Ricky T.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88I</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202303</creationdate><title>Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study</title><author>Blake, Samuel J. ; Dillon, Owen ; Byrne, Hilary L. ; O'Brien, Ricky T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4759-c8fa2b33771a99174322df3ac6d314ac640290a69a99be475cac5e8f62c0d6ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cancer</topic><topic>Computer Simulation</topic><topic>Cone-Beam Computed Tomography - methods</topic><topic>cone‐beam computed tomography</topic><topic>CT imaging</topic><topic>Diaphragm (Anatomy)</topic><topic>Four-Dimensional Computed Tomography - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>image reconstruction</topic><topic>Lung cancer</topic><topic>Motion</topic><topic>organ motion</topic><topic>Phantoms, Imaging</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>Simulation</topic><topic>Technical Note</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blake, Samuel J.</creatorcontrib><creatorcontrib>Dillon, Owen</creatorcontrib><creatorcontrib>Byrne, Hilary L.</creatorcontrib><creatorcontrib>O'Brien, Ricky T.</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Applied Clinical Medical Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blake, Samuel J.</au><au>Dillon, Owen</au><au>Byrne, Hilary L.</au><au>O'Brien, Ricky T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study</atitle><jtitle>Journal of Applied Clinical Medical Physics</jtitle><addtitle>J Appl Clin Med Phys</addtitle><date>2023-03</date><risdate>2023</risdate><volume>24</volume><issue>3</issue><spage>e13909</spage><epage>n/a</epage><pages>e13909-n/a</pages><issn>1526-9914</issn><eissn>1526-9914</eissn><abstract>Background
Rapid kV cone‐beam computed tomography (CBCT) scans are achievable in under 20 s on select linear accelerator systems to generate volumetric images in three dimensions (3D). Daily pre‐treatment four‐dimensional CBCT (4DCBCT) is recommended in image‐guided lung radiotherapy to mitigate the detrimental effects of respiratory motion on treatment quality.
Purpose
To demonstrate the potential for thoracic 4DCBCT reconstruction using projection data that was simulated using a clinical rapid 3DCBCT acquisition protocol.
Methods
We simulated conventional (1320 projections over 4 min) and rapid (491 projections over 16.6 s) CBCT acquisitions using 4D computed tomography (CT) volumes of 14 lung cancer patients. Conventional acquisition data were reconstructed using the 4D Feldkamp‐Davis‐Kress (FDK) algorithm. Rapid acquisition data were reconstructed using 3DFDK, 4DFDK, and Motion‐Compensated FDK (MCFDK). Image quality was evaluated using Contrast‐to‐Noise Ratio (CNR), Tissue Interface Width (TIW), Root‐Mean‐Square Error (RMSE), and Structural SIMilarity (SSIM).
Results
The conventional acquisition 4DFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.96, 8.02 mm, 83.5, and 0.54, respectively. The rapid acquisition 3DFDK reconstructions had median CNR, TIW, RMSE, and SSIM of 2.99, 13.6 mm, 112, and 0.44 respectively. The rapid acquisition MCFDK reconstructions had median phase averaged CNR, TIW, RMSE, and SSIM of 2.98, 10.2 mm, 103, and 0.46, respectively. Rapid acquisition 4DFDK reconstruction quality was insufficient for any practical use due to sparse angular projection sampling.
Conclusions
Results suggest that 4D motion‐compensated reconstruction of rapid acquisition thoracic CBCT data are feasible with image quality approaching conventional acquisition CBCT data reconstructed using standard 4DFDK.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>36680744</pmid><doi>10.1002/acm2.13909</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1526-9914 |
ispartof | Journal of Applied Clinical Medical Physics, 2023-03, Vol.24 (3), p.e13909-n/a |
issn | 1526-9914 1526-9914 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018653 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Algorithms Cancer Computer Simulation Cone-Beam Computed Tomography - methods cone‐beam computed tomography CT imaging Diaphragm (Anatomy) Four-Dimensional Computed Tomography - methods Humans Image Processing, Computer-Assisted - methods image reconstruction Lung cancer Motion organ motion Phantoms, Imaging Radiation therapy radiotherapy Simulation Technical Note |
title | Thoracic motion‐compensated cone‐beam computed tomography in under 20 seconds on a fast‐rotating linac: A simulation study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T00%3A05%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thoracic%20motion%E2%80%90compensated%20cone%E2%80%90beam%20computed%20tomography%20in%20under%2020%20seconds%20on%20a%20fast%E2%80%90rotating%20linac:%20A%20simulation%20study&rft.jtitle=Journal%20of%20Applied%20Clinical%20Medical%20Physics&rft.au=Blake,%20Samuel%20J.&rft.date=2023-03&rft.volume=24&rft.issue=3&rft.spage=e13909&rft.epage=n/a&rft.pages=e13909-n/a&rft.issn=1526-9914&rft.eissn=1526-9914&rft_id=info:doi/10.1002/acm2.13909&rft_dat=%3Cgale_pubme%3EA755345218%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787119293&rft_id=info:pmid/36680744&rft_galeid=A755345218&rfr_iscdi=true |