A riboswitch separated from its ribosome-binding site still regulates translation

Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2023-03, Vol.51 (5), p.2464-2484
Hauptverfasser: Schroeder, Griffin M, Akinyemi, Olayinka, Malik, Jeffrey, Focht, Caroline M, Pritchett, Elizabeth M, Baker, Cameron D, McSally, James P, Jenkins, Jermaine L, Mathews, David H, Wedekind, Joseph E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2484
container_issue 5
container_start_page 2464
container_title Nucleic acids research
container_volume 51
creator Schroeder, Griffin M
Akinyemi, Olayinka
Malik, Jeffrey
Focht, Caroline M
Pritchett, Elizabeth M
Baker, Cameron D
McSally, James P
Jenkins, Jermaine L
Mathews, David H
Wedekind, Joseph E
description Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.
doi_str_mv 10.1093/nar/gkad056
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad056</oup_id><sourcerecordid>2775618103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</originalsourceid><addsrcrecordid>eNp9kc9LXDEQx0NRdLWeei8PD0WQp5OXHy85iSxtFQQR7Dlkk-xu2veSbZJX6X9vZLdSL55mYD585zvzRegThgsMklwGnS5Xv7QFxj-gGSa8a6nk3R6aAQHWYqDiEB3l_BMAU8zoATokvOcdlWKGHq6b5BcxP_li1k12G510cbZZpjg2vuTtNI6uXfhgfVg12RfX5OKHoUluNQ0Vz01JOuTa-hg-ov2lHrI72dVj9OPb18f5TXt3__12fn3XGkqhtMRIykRvAWxvFxQ62guwFi8tZ1wyTJl0xEoNWArQmBjtJKdOUGFq7SU5Rldb3c20GJ01LlQTg9okP-r0V0Xt1dtJ8Gu1in8Urn8QhJGqcLpViPUclU09zKxNDMGZorDs6rNwhc52a1L8Pblc1OizccOgg4tTVl3fM44Fhhe98y1qUsw5ueWrGQzqJSpVo1K7qCr9-X__r-y_bCrwZWdv2ryr9AyIw53z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775618103</pqid></control><display><type>article</type><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</creator><creatorcontrib>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</creatorcontrib><description>Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad056</identifier><identifier>PMID: 36762498</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; Gene Expression Regulation ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Protein Biosynthesis ; Ribosomes - genetics ; Ribosomes - metabolism ; Riboswitch ; Structural Biology</subject><ispartof>Nucleic acids research, 2023-03, Vol.51 (5), p.2464-2484</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</citedby><cites>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</cites><orcidid>0000-0002-2907-6557 ; 0000-0002-4269-4229 ; 0000000229076557 ; 0000000242694229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018353/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018353/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36762498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1924151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Griffin M</creatorcontrib><creatorcontrib>Akinyemi, Olayinka</creatorcontrib><creatorcontrib>Malik, Jeffrey</creatorcontrib><creatorcontrib>Focht, Caroline M</creatorcontrib><creatorcontrib>Pritchett, Elizabeth M</creatorcontrib><creatorcontrib>Baker, Cameron D</creatorcontrib><creatorcontrib>McSally, James P</creatorcontrib><creatorcontrib>Jenkins, Jermaine L</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><creatorcontrib>Wedekind, Joseph E</creatorcontrib><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</description><subject>Binding Sites</subject><subject>Gene Expression Regulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Riboswitch</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9LXDEQx0NRdLWeei8PD0WQp5OXHy85iSxtFQQR7Dlkk-xu2veSbZJX6X9vZLdSL55mYD585zvzRegThgsMklwGnS5Xv7QFxj-gGSa8a6nk3R6aAQHWYqDiEB3l_BMAU8zoATokvOcdlWKGHq6b5BcxP_li1k12G510cbZZpjg2vuTtNI6uXfhgfVg12RfX5OKHoUluNQ0Vz01JOuTa-hg-ov2lHrI72dVj9OPb18f5TXt3__12fn3XGkqhtMRIykRvAWxvFxQ62guwFi8tZ1wyTJl0xEoNWArQmBjtJKdOUGFq7SU5Rldb3c20GJ01LlQTg9okP-r0V0Xt1dtJ8Gu1in8Urn8QhJGqcLpViPUclU09zKxNDMGZorDs6rNwhc52a1L8Pblc1OizccOgg4tTVl3fM44Fhhe98y1qUsw5ueWrGQzqJSpVo1K7qCr9-X__r-y_bCrwZWdv2ryr9AyIw53z</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Schroeder, Griffin M</creator><creator>Akinyemi, Olayinka</creator><creator>Malik, Jeffrey</creator><creator>Focht, Caroline M</creator><creator>Pritchett, Elizabeth M</creator><creator>Baker, Cameron D</creator><creator>McSally, James P</creator><creator>Jenkins, Jermaine L</creator><creator>Mathews, David H</creator><creator>Wedekind, Joseph E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid><orcidid>https://orcid.org/0000-0002-4269-4229</orcidid><orcidid>https://orcid.org/0000000229076557</orcidid><orcidid>https://orcid.org/0000000242694229</orcidid></search><sort><creationdate>20230321</creationdate><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><author>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding Sites</topic><topic>Gene Expression Regulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Riboswitch</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Griffin M</creatorcontrib><creatorcontrib>Akinyemi, Olayinka</creatorcontrib><creatorcontrib>Malik, Jeffrey</creatorcontrib><creatorcontrib>Focht, Caroline M</creatorcontrib><creatorcontrib>Pritchett, Elizabeth M</creatorcontrib><creatorcontrib>Baker, Cameron D</creatorcontrib><creatorcontrib>McSally, James P</creatorcontrib><creatorcontrib>Jenkins, Jermaine L</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><creatorcontrib>Wedekind, Joseph E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Griffin M</au><au>Akinyemi, Olayinka</au><au>Malik, Jeffrey</au><au>Focht, Caroline M</au><au>Pritchett, Elizabeth M</au><au>Baker, Cameron D</au><au>McSally, James P</au><au>Jenkins, Jermaine L</au><au>Mathews, David H</au><au>Wedekind, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A riboswitch separated from its ribosome-binding site still regulates translation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>51</volume><issue>5</issue><spage>2464</spage><epage>2484</epage><pages>2464-2484</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36762498</pmid><doi>10.1093/nar/gkad056</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid><orcidid>https://orcid.org/0000-0002-4269-4229</orcidid><orcidid>https://orcid.org/0000000229076557</orcidid><orcidid>https://orcid.org/0000000242694229</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2023-03, Vol.51 (5), p.2464-2484
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018353
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Binding Sites
Gene Expression Regulation
Molecular Dynamics Simulation
Nucleic Acid Conformation
Protein Biosynthesis
Ribosomes - genetics
Ribosomes - metabolism
Riboswitch
Structural Biology
title A riboswitch separated from its ribosome-binding site still regulates translation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20riboswitch%20separated%20from%20its%20ribosome-binding%20site%20still%20regulates%20translation&rft.jtitle=Nucleic%20acids%20research&rft.au=Schroeder,%20Griffin%20M&rft.date=2023-03-21&rft.volume=51&rft.issue=5&rft.spage=2464&rft.epage=2484&rft.pages=2464-2484&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad056&rft_dat=%3Cproquest_pubme%3E2775618103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775618103&rft_id=info:pmid/36762498&rft_oup_id=10.1093/nar/gkad056&rfr_iscdi=true