A riboswitch separated from its ribosome-binding site still regulates translation
Abstract Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crys...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2023-03, Vol.51 (5), p.2464-2484 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2484 |
---|---|
container_issue | 5 |
container_start_page | 2464 |
container_title | Nucleic acids research |
container_volume | 51 |
creator | Schroeder, Griffin M Akinyemi, Olayinka Malik, Jeffrey Focht, Caroline M Pritchett, Elizabeth M Baker, Cameron D McSally, James P Jenkins, Jermaine L Mathews, David H Wedekind, Joseph E |
description | Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold. |
doi_str_mv | 10.1093/nar/gkad056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkad056</oup_id><sourcerecordid>2775618103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</originalsourceid><addsrcrecordid>eNp9kc9LXDEQx0NRdLWeei8PD0WQp5OXHy85iSxtFQQR7Dlkk-xu2veSbZJX6X9vZLdSL55mYD585zvzRegThgsMklwGnS5Xv7QFxj-gGSa8a6nk3R6aAQHWYqDiEB3l_BMAU8zoATokvOcdlWKGHq6b5BcxP_li1k12G510cbZZpjg2vuTtNI6uXfhgfVg12RfX5OKHoUluNQ0Vz01JOuTa-hg-ov2lHrI72dVj9OPb18f5TXt3__12fn3XGkqhtMRIykRvAWxvFxQ62guwFi8tZ1wyTJl0xEoNWArQmBjtJKdOUGFq7SU5Rldb3c20GJ01LlQTg9okP-r0V0Xt1dtJ8Gu1in8Urn8QhJGqcLpViPUclU09zKxNDMGZorDs6rNwhc52a1L8Pblc1OizccOgg4tTVl3fM44Fhhe98y1qUsw5ueWrGQzqJSpVo1K7qCr9-X__r-y_bCrwZWdv2ryr9AyIw53z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2775618103</pqid></control><display><type>article</type><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</creator><creatorcontrib>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</creatorcontrib><description>Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkad056</identifier><identifier>PMID: 36762498</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Binding Sites ; Gene Expression Regulation ; Molecular Dynamics Simulation ; Nucleic Acid Conformation ; Protein Biosynthesis ; Ribosomes - genetics ; Ribosomes - metabolism ; Riboswitch ; Structural Biology</subject><ispartof>Nucleic acids research, 2023-03, Vol.51 (5), p.2464-2484</ispartof><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 2023</rights><rights>The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</citedby><cites>FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</cites><orcidid>0000-0002-2907-6557 ; 0000-0002-4269-4229 ; 0000000229076557 ; 0000000242694229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018353/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10018353/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36762498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1924151$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Schroeder, Griffin M</creatorcontrib><creatorcontrib>Akinyemi, Olayinka</creatorcontrib><creatorcontrib>Malik, Jeffrey</creatorcontrib><creatorcontrib>Focht, Caroline M</creatorcontrib><creatorcontrib>Pritchett, Elizabeth M</creatorcontrib><creatorcontrib>Baker, Cameron D</creatorcontrib><creatorcontrib>McSally, James P</creatorcontrib><creatorcontrib>Jenkins, Jermaine L</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><creatorcontrib>Wedekind, Joseph E</creatorcontrib><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</description><subject>Binding Sites</subject><subject>Gene Expression Regulation</subject><subject>Molecular Dynamics Simulation</subject><subject>Nucleic Acid Conformation</subject><subject>Protein Biosynthesis</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Riboswitch</subject><subject>Structural Biology</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9LXDEQx0NRdLWeei8PD0WQp5OXHy85iSxtFQQR7Dlkk-xu2veSbZJX6X9vZLdSL55mYD585zvzRegThgsMklwGnS5Xv7QFxj-gGSa8a6nk3R6aAQHWYqDiEB3l_BMAU8zoATokvOcdlWKGHq6b5BcxP_li1k12G510cbZZpjg2vuTtNI6uXfhgfVg12RfX5OKHoUluNQ0Vz01JOuTa-hg-ov2lHrI72dVj9OPb18f5TXt3__12fn3XGkqhtMRIykRvAWxvFxQ62guwFi8tZ1wyTJl0xEoNWArQmBjtJKdOUGFq7SU5Rldb3c20GJ01LlQTg9okP-r0V0Xt1dtJ8Gu1in8Urn8QhJGqcLpViPUclU09zKxNDMGZorDs6rNwhc52a1L8Pblc1OizccOgg4tTVl3fM44Fhhe98y1qUsw5ueWrGQzqJSpVo1K7qCr9-X__r-y_bCrwZWdv2ryr9AyIw53z</recordid><startdate>20230321</startdate><enddate>20230321</enddate><creator>Schroeder, Griffin M</creator><creator>Akinyemi, Olayinka</creator><creator>Malik, Jeffrey</creator><creator>Focht, Caroline M</creator><creator>Pritchett, Elizabeth M</creator><creator>Baker, Cameron D</creator><creator>McSally, James P</creator><creator>Jenkins, Jermaine L</creator><creator>Mathews, David H</creator><creator>Wedekind, Joseph E</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid><orcidid>https://orcid.org/0000-0002-4269-4229</orcidid><orcidid>https://orcid.org/0000000229076557</orcidid><orcidid>https://orcid.org/0000000242694229</orcidid></search><sort><creationdate>20230321</creationdate><title>A riboswitch separated from its ribosome-binding site still regulates translation</title><author>Schroeder, Griffin M ; Akinyemi, Olayinka ; Malik, Jeffrey ; Focht, Caroline M ; Pritchett, Elizabeth M ; Baker, Cameron D ; McSally, James P ; Jenkins, Jermaine L ; Mathews, David H ; Wedekind, Joseph E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3c94587d00d7db4024780dd1fd656951459e3d9a01980a13cae964e848c964793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Binding Sites</topic><topic>Gene Expression Regulation</topic><topic>Molecular Dynamics Simulation</topic><topic>Nucleic Acid Conformation</topic><topic>Protein Biosynthesis</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Riboswitch</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schroeder, Griffin M</creatorcontrib><creatorcontrib>Akinyemi, Olayinka</creatorcontrib><creatorcontrib>Malik, Jeffrey</creatorcontrib><creatorcontrib>Focht, Caroline M</creatorcontrib><creatorcontrib>Pritchett, Elizabeth M</creatorcontrib><creatorcontrib>Baker, Cameron D</creatorcontrib><creatorcontrib>McSally, James P</creatorcontrib><creatorcontrib>Jenkins, Jermaine L</creatorcontrib><creatorcontrib>Mathews, David H</creatorcontrib><creatorcontrib>Wedekind, Joseph E</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schroeder, Griffin M</au><au>Akinyemi, Olayinka</au><au>Malik, Jeffrey</au><au>Focht, Caroline M</au><au>Pritchett, Elizabeth M</au><au>Baker, Cameron D</au><au>McSally, James P</au><au>Jenkins, Jermaine L</au><au>Mathews, David H</au><au>Wedekind, Joseph E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A riboswitch separated from its ribosome-binding site still regulates translation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2023-03-21</date><risdate>2023</risdate><volume>51</volume><issue>5</issue><spage>2464</spage><epage>2484</epage><pages>2464-2484</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Abstract
Riboswitches regulate downstream gene expression by binding cellular metabolites. Regulation of translation initiation by riboswitches is posited to occur by metabolite-mediated sequestration of the Shine-Dalgarno sequence (SDS), causing bypass by the ribosome. Recently, we solved a co-crystal structure of a prequeuosine1-sensing riboswitch from Carnobacterium antarcticum that binds two metabolites in a single pocket. The structure revealed that the second nucleotide within the gene-regulatory SDS, G34, engages in a crystal contact, obscuring the molecular basis of gene regulation. Here, we report a co-crystal structure wherein C10 pairs with G34. However, molecular dynamics simulations reveal quick dissolution of the pair, which fails to reform. Functional and chemical probing assays inside live bacterial cells corroborate the dispensability of the C10–G34 pair in gene regulation, leading to the hypothesis that the compact pseudoknot fold is sufficient for translation attenuation. Remarkably, the C. antarcticum aptamer retained significant gene-regulatory activity when uncoupled from the SDS using unstructured spacers up to 10 nucleotides away from the riboswitch—akin to steric-blocking employed by sRNAs. Accordingly, our work reveals that the RNA fold regulates translation without SDS sequestration, expanding known riboswitch-mediated gene-regulatory mechanisms. The results infer that riboswitches exist wherein the SDS is not embedded inside a stable fold.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>36762498</pmid><doi>10.1093/nar/gkad056</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-2907-6557</orcidid><orcidid>https://orcid.org/0000-0002-4269-4229</orcidid><orcidid>https://orcid.org/0000000229076557</orcidid><orcidid>https://orcid.org/0000000242694229</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2023-03, Vol.51 (5), p.2464-2484 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10018353 |
source | Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Binding Sites Gene Expression Regulation Molecular Dynamics Simulation Nucleic Acid Conformation Protein Biosynthesis Ribosomes - genetics Ribosomes - metabolism Riboswitch Structural Biology |
title | A riboswitch separated from its ribosome-binding site still regulates translation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A31%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20riboswitch%20separated%20from%20its%20ribosome-binding%20site%20still%20regulates%20translation&rft.jtitle=Nucleic%20acids%20research&rft.au=Schroeder,%20Griffin%20M&rft.date=2023-03-21&rft.volume=51&rft.issue=5&rft.spage=2464&rft.epage=2484&rft.pages=2464-2484&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkad056&rft_dat=%3Cproquest_pubme%3E2775618103%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2775618103&rft_id=info:pmid/36762498&rft_oup_id=10.1093/nar/gkad056&rfr_iscdi=true |