Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters

Objectives To investigate the prognostic value of [ 18 F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [ 18 F]FDG PET/CT parameters. Methods A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European radiology 2023-04, Vol.33 (4), p.2840-2849
Hauptverfasser: Dongxiang, Wen, Liting, Liu, Yujing, Liang, Meijuan, Luo, Shanshan, Guo, Longbin, Xiong, Yanzhou, Chen, Meiling, Chen, Kang, Ning, Haiqiang, Mai, Linquan, Tang, Qiuyan, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2849
container_issue 4
container_start_page 2840
container_title European radiology
container_volume 33
creator Dongxiang, Wen
Liting, Liu
Yujing, Liang
Meijuan, Luo
Shanshan, Guo
Longbin, Xiong
Yanzhou, Chen
Meiling, Chen
Kang, Ning
Haiqiang, Mai
Linquan, Tang
Qiuyan, Chen
description Objectives To investigate the prognostic value of [ 18 F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [ 18 F]FDG PET/CT parameters. Methods A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-sen University Cancer Center with complete baseline characteristics and [ 18 F]FDG PET/CT data were retrospectively analyzed. Maximal standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity index (HI) for recurrent nasopharynx tumors were included. Cox regression analysis was performed to select candidate variables. Subsequently, a nomogram for predicting overall survival (OS) for lrNPC patients was developed and internally validated. Results Multivariate Cox analysis results suggested that age ≥ 47 years (hazard ratio (HR), 1.62 (1.18-2.24); p = 0.003),with smoking history (HR, 1.41 (1.01–1.98); p = 0.046), recurrent T stage {[rT3 vs rT1/2: HR, 1.81 (1.04–3.12); p = 0.037]; [rT4 vs rT1/2: HR, 2.46 (1.32–4.60); p = 0.005]}, and TLG {[37.1–184.3 vs ≤ 37.1: HR, 2.26 (1.49–3.42); p < 0.001]; [>184.3 vs ≤ 37.1: HR, 4.31 (2.50–7.43); p < 0.001]) were independent predictors of OS. A 4-factor nomogram was generated to stratify patients into 3 risk groups. This novel model showed good discrimination with a high C-index (0.752, 95%CI: 0.714–0.790). In addition, the calibration curves showed good agreement between the predicted probabilities and actual observations and decision curve analysis (DCA) suggested that the nomogram was useful for clinical decision-making. Conclusions Our study confirmed that [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. The 4-factor prognostic model combing baseline patient characteristics with [ 18 F]FDG PET/CT parameters for lrNPC patients had good discrimination, agreement, and clinical application potential. Key Points • [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. • The novel 4-factor nomogram for lrNPC patients had good discrimination, agreement, and potential for clinical application.
doi_str_mv 10.1007/s00330-022-09232-1
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2787049751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c3a6ffce19a44cdc16ea3c03a844ff70edbe877123b1b8c23b4816c5d4ef9bd93</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cQu3YWSdcULV0C1IlelhOCFkTZ7LrKrGDnSziNXkiZrttKRw42fJ88_8znsmyl4K_FZzr08S5lDznRZHzupBFLh5lx0LtL7xSjx_cj7JnKV1zzmuh9NPsSC5UUSyUPs5-XUVsnZ1c8Cx0LMyTDQMm5jwbYXLop8R-uGnL-mChZxHtHCO9Mg8pjFuIP_0GKWAhWufDAO9YizvswzjsKfAt20HvWrhzANaFOeYd2ClENsaw8SFNzrIhtNiT74SbSLTfsAYS9s4js-RDPEa3J9ON6ldRrb6tPlywq_P16XJN1UYYkJj0PHvSQZ_wxe15kn1Zna-XH_PLzxeflmeXuVW6nHIrYdF1FkUNStnWigWCtFxCpVTXaY5tg5XWopCNaCpLh6rEwpatwq5u2lqeZO8PuuPcDNha6jdCb8boBvoWE8CZvyPebc0m7AwNT-iyKknhza1CDN9nTJMZXLLY9-AxzMkUWtZa8bJWhL7-B72mb_TUH1GV5qrWpSCqOFA2hpQidvfVCL631eawM4Z2xtzsjNknvXrYx33K3ZIQIA9AohCNO_7x_o_sbzeh03I</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2787049751</pqid></control><display><type>article</type><title>Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Dongxiang, Wen ; Liting, Liu ; Yujing, Liang ; Meijuan, Luo ; Shanshan, Guo ; Longbin, Xiong ; Yanzhou, Chen ; Meiling, Chen ; Kang, Ning ; Haiqiang, Mai ; Linquan, Tang ; Qiuyan, Chen</creator><creatorcontrib>Dongxiang, Wen ; Liting, Liu ; Yujing, Liang ; Meijuan, Luo ; Shanshan, Guo ; Longbin, Xiong ; Yanzhou, Chen ; Meiling, Chen ; Kang, Ning ; Haiqiang, Mai ; Linquan, Tang ; Qiuyan, Chen</creatorcontrib><description>Objectives To investigate the prognostic value of [ 18 F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [ 18 F]FDG PET/CT parameters. Methods A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-sen University Cancer Center with complete baseline characteristics and [ 18 F]FDG PET/CT data were retrospectively analyzed. Maximal standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity index (HI) for recurrent nasopharynx tumors were included. Cox regression analysis was performed to select candidate variables. Subsequently, a nomogram for predicting overall survival (OS) for lrNPC patients was developed and internally validated. Results Multivariate Cox analysis results suggested that age ≥ 47 years (hazard ratio (HR), 1.62 (1.18-2.24); p = 0.003),with smoking history (HR, 1.41 (1.01–1.98); p = 0.046), recurrent T stage {[rT3 vs rT1/2: HR, 1.81 (1.04–3.12); p = 0.037]; [rT4 vs rT1/2: HR, 2.46 (1.32–4.60); p = 0.005]}, and TLG {[37.1–184.3 vs ≤ 37.1: HR, 2.26 (1.49–3.42); p &lt; 0.001]; [&gt;184.3 vs ≤ 37.1: HR, 4.31 (2.50–7.43); p &lt; 0.001]) were independent predictors of OS. A 4-factor nomogram was generated to stratify patients into 3 risk groups. This novel model showed good discrimination with a high C-index (0.752, 95%CI: 0.714–0.790). In addition, the calibration curves showed good agreement between the predicted probabilities and actual observations and decision curve analysis (DCA) suggested that the nomogram was useful for clinical decision-making. Conclusions Our study confirmed that [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. The 4-factor prognostic model combing baseline patient characteristics with [ 18 F]FDG PET/CT parameters for lrNPC patients had good discrimination, agreement, and clinical application potential. Key Points • [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. • The novel 4-factor nomogram for lrNPC patients had good discrimination, agreement, and potential for clinical application.</description><identifier>ISSN: 1432-1084</identifier><identifier>ISSN: 0938-7994</identifier><identifier>EISSN: 1432-1084</identifier><identifier>DOI: 10.1007/s00330-022-09232-1</identifier><identifier>PMID: 36422647</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Calibration ; Cancer ; Cancer therapies ; Decision analysis ; Decision making ; Diagnostic Radiology ; Epstein-Barr virus ; Fluorine isotopes ; Fluorodeoxyglucose F18 - metabolism ; Glycolysis ; Head and Neck ; Heterogeneity ; Humans ; Hypertension ; Imaging ; Internal Medicine ; Interventional Radiology ; Laboratories ; Mathematical models ; Medical prognosis ; Medicine ; Medicine &amp; Public Health ; Metabolism ; Metastasis ; Middle Aged ; Nasopharyngeal Carcinoma ; Nasopharyngeal Neoplasms - diagnostic imaging ; Nasopharynx ; Neoplasm Recurrence, Local - pathology ; Neuroradiology ; Nomograms ; Parameters ; Patients ; Positron emission tomography ; Positron Emission Tomography Computed Tomography - methods ; Prognosis ; Radiation therapy ; Radiology ; Radiopharmaceuticals ; Regression analysis ; Retrospective Studies ; Risk groups ; Throat cancer ; Tomography ; Tumor Burden ; Tumors ; Ultrasound</subject><ispartof>European radiology, 2023-04, Vol.33 (4), p.2840-2849</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c3a6ffce19a44cdc16ea3c03a844ff70edbe877123b1b8c23b4816c5d4ef9bd93</citedby><cites>FETCH-LOGICAL-c475t-c3a6ffce19a44cdc16ea3c03a844ff70edbe877123b1b8c23b4816c5d4ef9bd93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00330-022-09232-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00330-022-09232-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36422647$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dongxiang, Wen</creatorcontrib><creatorcontrib>Liting, Liu</creatorcontrib><creatorcontrib>Yujing, Liang</creatorcontrib><creatorcontrib>Meijuan, Luo</creatorcontrib><creatorcontrib>Shanshan, Guo</creatorcontrib><creatorcontrib>Longbin, Xiong</creatorcontrib><creatorcontrib>Yanzhou, Chen</creatorcontrib><creatorcontrib>Meiling, Chen</creatorcontrib><creatorcontrib>Kang, Ning</creatorcontrib><creatorcontrib>Haiqiang, Mai</creatorcontrib><creatorcontrib>Linquan, Tang</creatorcontrib><creatorcontrib>Qiuyan, Chen</creatorcontrib><title>Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters</title><title>European radiology</title><addtitle>Eur Radiol</addtitle><addtitle>Eur Radiol</addtitle><description>Objectives To investigate the prognostic value of [ 18 F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [ 18 F]FDG PET/CT parameters. Methods A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-sen University Cancer Center with complete baseline characteristics and [ 18 F]FDG PET/CT data were retrospectively analyzed. Maximal standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity index (HI) for recurrent nasopharynx tumors were included. Cox regression analysis was performed to select candidate variables. Subsequently, a nomogram for predicting overall survival (OS) for lrNPC patients was developed and internally validated. Results Multivariate Cox analysis results suggested that age ≥ 47 years (hazard ratio (HR), 1.62 (1.18-2.24); p = 0.003),with smoking history (HR, 1.41 (1.01–1.98); p = 0.046), recurrent T stage {[rT3 vs rT1/2: HR, 1.81 (1.04–3.12); p = 0.037]; [rT4 vs rT1/2: HR, 2.46 (1.32–4.60); p = 0.005]}, and TLG {[37.1–184.3 vs ≤ 37.1: HR, 2.26 (1.49–3.42); p &lt; 0.001]; [&gt;184.3 vs ≤ 37.1: HR, 4.31 (2.50–7.43); p &lt; 0.001]) were independent predictors of OS. A 4-factor nomogram was generated to stratify patients into 3 risk groups. This novel model showed good discrimination with a high C-index (0.752, 95%CI: 0.714–0.790). In addition, the calibration curves showed good agreement between the predicted probabilities and actual observations and decision curve analysis (DCA) suggested that the nomogram was useful for clinical decision-making. Conclusions Our study confirmed that [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. The 4-factor prognostic model combing baseline patient characteristics with [ 18 F]FDG PET/CT parameters for lrNPC patients had good discrimination, agreement, and clinical application potential. Key Points • [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. • The novel 4-factor nomogram for lrNPC patients had good discrimination, agreement, and potential for clinical application.</description><subject>Calibration</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Diagnostic Radiology</subject><subject>Epstein-Barr virus</subject><subject>Fluorine isotopes</subject><subject>Fluorodeoxyglucose F18 - metabolism</subject><subject>Glycolysis</subject><subject>Head and Neck</subject><subject>Heterogeneity</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Imaging</subject><subject>Internal Medicine</subject><subject>Interventional Radiology</subject><subject>Laboratories</subject><subject>Mathematical models</subject><subject>Medical prognosis</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Metabolism</subject><subject>Metastasis</subject><subject>Middle Aged</subject><subject>Nasopharyngeal Carcinoma</subject><subject>Nasopharyngeal Neoplasms - diagnostic imaging</subject><subject>Nasopharynx</subject><subject>Neoplasm Recurrence, Local - pathology</subject><subject>Neuroradiology</subject><subject>Nomograms</subject><subject>Parameters</subject><subject>Patients</subject><subject>Positron emission tomography</subject><subject>Positron Emission Tomography Computed Tomography - methods</subject><subject>Prognosis</subject><subject>Radiation therapy</subject><subject>Radiology</subject><subject>Radiopharmaceuticals</subject><subject>Regression analysis</subject><subject>Retrospective Studies</subject><subject>Risk groups</subject><subject>Throat cancer</subject><subject>Tomography</subject><subject>Tumor Burden</subject><subject>Tumors</subject><subject>Ultrasound</subject><issn>1432-1084</issn><issn>0938-7994</issn><issn>1432-1084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9ksFu1DAQhiMEoqXwAhyQJS5cQu3YWSdcULV0C1IlelhOCFkTZ7LrKrGDnSziNXkiZrttKRw42fJ88_8znsmyl4K_FZzr08S5lDznRZHzupBFLh5lx0LtL7xSjx_cj7JnKV1zzmuh9NPsSC5UUSyUPs5-XUVsnZ1c8Cx0LMyTDQMm5jwbYXLop8R-uGnL-mChZxHtHCO9Mg8pjFuIP_0GKWAhWufDAO9YizvswzjsKfAt20HvWrhzANaFOeYd2ClENsaw8SFNzrIhtNiT74SbSLTfsAYS9s4js-RDPEa3J9ON6ldRrb6tPlywq_P16XJN1UYYkJj0PHvSQZ_wxe15kn1Zna-XH_PLzxeflmeXuVW6nHIrYdF1FkUNStnWigWCtFxCpVTXaY5tg5XWopCNaCpLh6rEwpatwq5u2lqeZO8PuuPcDNha6jdCb8boBvoWE8CZvyPebc0m7AwNT-iyKknhza1CDN9nTJMZXLLY9-AxzMkUWtZa8bJWhL7-B72mb_TUH1GV5qrWpSCqOFA2hpQidvfVCL631eawM4Z2xtzsjNknvXrYx33K3ZIQIA9AohCNO_7x_o_sbzeh03I</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Dongxiang, Wen</creator><creator>Liting, Liu</creator><creator>Yujing, Liang</creator><creator>Meijuan, Luo</creator><creator>Shanshan, Guo</creator><creator>Longbin, Xiong</creator><creator>Yanzhou, Chen</creator><creator>Meiling, Chen</creator><creator>Kang, Ning</creator><creator>Haiqiang, Mai</creator><creator>Linquan, Tang</creator><creator>Qiuyan, Chen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230401</creationdate><title>Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters</title><author>Dongxiang, Wen ; Liting, Liu ; Yujing, Liang ; Meijuan, Luo ; Shanshan, Guo ; Longbin, Xiong ; Yanzhou, Chen ; Meiling, Chen ; Kang, Ning ; Haiqiang, Mai ; Linquan, Tang ; Qiuyan, Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c3a6ffce19a44cdc16ea3c03a844ff70edbe877123b1b8c23b4816c5d4ef9bd93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Calibration</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Diagnostic Radiology</topic><topic>Epstein-Barr virus</topic><topic>Fluorine isotopes</topic><topic>Fluorodeoxyglucose F18 - metabolism</topic><topic>Glycolysis</topic><topic>Head and Neck</topic><topic>Heterogeneity</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Imaging</topic><topic>Internal Medicine</topic><topic>Interventional Radiology</topic><topic>Laboratories</topic><topic>Mathematical models</topic><topic>Medical prognosis</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Metabolism</topic><topic>Metastasis</topic><topic>Middle Aged</topic><topic>Nasopharyngeal Carcinoma</topic><topic>Nasopharyngeal Neoplasms - diagnostic imaging</topic><topic>Nasopharynx</topic><topic>Neoplasm Recurrence, Local - pathology</topic><topic>Neuroradiology</topic><topic>Nomograms</topic><topic>Parameters</topic><topic>Patients</topic><topic>Positron emission tomography</topic><topic>Positron Emission Tomography Computed Tomography - methods</topic><topic>Prognosis</topic><topic>Radiation therapy</topic><topic>Radiology</topic><topic>Radiopharmaceuticals</topic><topic>Regression analysis</topic><topic>Retrospective Studies</topic><topic>Risk groups</topic><topic>Throat cancer</topic><topic>Tomography</topic><topic>Tumor Burden</topic><topic>Tumors</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dongxiang, Wen</creatorcontrib><creatorcontrib>Liting, Liu</creatorcontrib><creatorcontrib>Yujing, Liang</creatorcontrib><creatorcontrib>Meijuan, Luo</creatorcontrib><creatorcontrib>Shanshan, Guo</creatorcontrib><creatorcontrib>Longbin, Xiong</creatorcontrib><creatorcontrib>Yanzhou, Chen</creatorcontrib><creatorcontrib>Meiling, Chen</creatorcontrib><creatorcontrib>Kang, Ning</creatorcontrib><creatorcontrib>Haiqiang, Mai</creatorcontrib><creatorcontrib>Linquan, Tang</creatorcontrib><creatorcontrib>Qiuyan, Chen</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>European radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dongxiang, Wen</au><au>Liting, Liu</au><au>Yujing, Liang</au><au>Meijuan, Luo</au><au>Shanshan, Guo</au><au>Longbin, Xiong</au><au>Yanzhou, Chen</au><au>Meiling, Chen</au><au>Kang, Ning</au><au>Haiqiang, Mai</au><au>Linquan, Tang</au><au>Qiuyan, Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters</atitle><jtitle>European radiology</jtitle><stitle>Eur Radiol</stitle><addtitle>Eur Radiol</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><spage>2840</spage><epage>2849</epage><pages>2840-2849</pages><issn>1432-1084</issn><issn>0938-7994</issn><eissn>1432-1084</eissn><abstract>Objectives To investigate the prognostic value of [ 18 F]FDG PET/CT parameters in local recurrent nasopharyngeal carcinoma (lrNPC) and establish a prognostic tool for lrNPC patients based on these [ 18 F]FDG PET/CT parameters. Methods A total of 358 lrNPC patients seen from 2010 to 2019 at Sun Yat-sen University Cancer Center with complete baseline characteristics and [ 18 F]FDG PET/CT data were retrospectively analyzed. Maximal standardized uptake value (SUVmax), SUVmean, SUVpeak, metabolic tumor volume (MTV), total lesion glycolysis (TLG), and heterogeneity index (HI) for recurrent nasopharynx tumors were included. Cox regression analysis was performed to select candidate variables. Subsequently, a nomogram for predicting overall survival (OS) for lrNPC patients was developed and internally validated. Results Multivariate Cox analysis results suggested that age ≥ 47 years (hazard ratio (HR), 1.62 (1.18-2.24); p = 0.003),with smoking history (HR, 1.41 (1.01–1.98); p = 0.046), recurrent T stage {[rT3 vs rT1/2: HR, 1.81 (1.04–3.12); p = 0.037]; [rT4 vs rT1/2: HR, 2.46 (1.32–4.60); p = 0.005]}, and TLG {[37.1–184.3 vs ≤ 37.1: HR, 2.26 (1.49–3.42); p &lt; 0.001]; [&gt;184.3 vs ≤ 37.1: HR, 4.31 (2.50–7.43); p &lt; 0.001]) were independent predictors of OS. A 4-factor nomogram was generated to stratify patients into 3 risk groups. This novel model showed good discrimination with a high C-index (0.752, 95%CI: 0.714–0.790). In addition, the calibration curves showed good agreement between the predicted probabilities and actual observations and decision curve analysis (DCA) suggested that the nomogram was useful for clinical decision-making. Conclusions Our study confirmed that [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. The 4-factor prognostic model combing baseline patient characteristics with [ 18 F]FDG PET/CT parameters for lrNPC patients had good discrimination, agreement, and clinical application potential. Key Points • [ 18 F]FDG PET/CT parameters were valuable in predicting OS and PFS for lrNPC patients. • The novel 4-factor nomogram for lrNPC patients had good discrimination, agreement, and potential for clinical application.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>36422647</pmid><doi>10.1007/s00330-022-09232-1</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1432-1084
ispartof European radiology, 2023-04, Vol.33 (4), p.2840-2849
issn 1432-1084
0938-7994
1432-1084
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017585
source MEDLINE; SpringerNature Journals
subjects Calibration
Cancer
Cancer therapies
Decision analysis
Decision making
Diagnostic Radiology
Epstein-Barr virus
Fluorine isotopes
Fluorodeoxyglucose F18 - metabolism
Glycolysis
Head and Neck
Heterogeneity
Humans
Hypertension
Imaging
Internal Medicine
Interventional Radiology
Laboratories
Mathematical models
Medical prognosis
Medicine
Medicine & Public Health
Metabolism
Metastasis
Middle Aged
Nasopharyngeal Carcinoma
Nasopharyngeal Neoplasms - diagnostic imaging
Nasopharynx
Neoplasm Recurrence, Local - pathology
Neuroradiology
Nomograms
Parameters
Patients
Positron emission tomography
Positron Emission Tomography Computed Tomography - methods
Prognosis
Radiation therapy
Radiology
Radiopharmaceuticals
Regression analysis
Retrospective Studies
Risk groups
Throat cancer
Tomography
Tumor Burden
Tumors
Ultrasound
title Prediction of outcomes in patients with local recurrent nasopharyngeal carcinoma: development and validation of a four-factor prognostic model integrating baseline characteristics and [18F]FDG PET/CT parameters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A47%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20outcomes%20in%20patients%20with%20local%20recurrent%20nasopharyngeal%20carcinoma:%20development%20and%20validation%20of%20a%20four-factor%20prognostic%20model%20integrating%20baseline%20characteristics%20and%20%5B18F%5DFDG%20PET/CT%20parameters&rft.jtitle=European%20radiology&rft.au=Dongxiang,%20Wen&rft.date=2023-04-01&rft.volume=33&rft.issue=4&rft.spage=2840&rft.epage=2849&rft.pages=2840-2849&rft.issn=1432-1084&rft.eissn=1432-1084&rft_id=info:doi/10.1007/s00330-022-09232-1&rft_dat=%3Cproquest_pubme%3E2787049751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2787049751&rft_id=info:pmid/36422647&rfr_iscdi=true