Effects of high oxygen tension on healthy volunteer microcirculation

Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diving and Hyperbaric Medicine Journal 2022-12, Vol.52 (4), p.260-270
Hauptverfasser: Cousin, Nicolas, Goutay, Julien, Girardie, Patrick, Favory, Raphaël, Drumez, Elodie, Mathieu, Daniel, Poissy, Julien, Parmentier, Erika, Duburcq, Thibault
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 270
container_issue 4
container_start_page 260
container_title Diving and Hyperbaric Medicine Journal
container_volume 52
creator Cousin, Nicolas
Goutay, Julien
Girardie, Patrick
Favory, Raphaël
Drumez, Elodie
Mathieu, Daniel
Poissy, Julien
Parmentier, Erika
Duburcq, Thibault
description Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO₂). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P < 0.001) and bradycardia (55 (7) beats·min⁻¹ vs 66 (8), P < 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P < 0.05) in response to increased PtcO₂ (104.0 (45.9) kPa vs 6.3 (2.4), P < 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P < 0.05). Microvascular reactivity was preserved in every condition. Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO₂ promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.
doi_str_mv 10.28920/dhm52.4.260-270
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2755575794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-b0e1bb47fa750dda12d6ad22bbbcc729fc4b440d69b7f2b1ed7fcc3da78c0b193</originalsourceid><addsrcrecordid>eNpdUU1P20AQXVUgCJR7T5WP9OAw--X1niqUAqkUiQs9r_YzdmV7qdeOyL_vQlLUVhrNSDPvvdHMQ-gThiWpJYEb1_ScLNmSVFASAR_QghCQJWYSn6AFriktKcfVObpI6ScAZ7TiZ-g8Z8Krmi7Qt7sQvJ1SEUPRtNumiC_7rR-KyQ-pjUORo_G6m5p9sYvdPEzej0Xf2jHadrRzp6eM-ohOg-6SvzrWS_Tj_u5ptS43jw_fV7eb0lJGptKAx8YwEbTg4JzGxFXaEWKMsVYQGSwzjIGrpBGBGOydCNZSp0VtwWBJL9HXg-7zbHrvrB-mUXfqeWx7Pe5V1K36dzK0jdrGncIAWGBZZ4UvB4XmP976dqNee8ColCDoDmfs9XHbGH_NPk2qb5P1XacHH-ekiOCcCy4ky1A4QPNfUhp9eNfGoN6cUm9OKaayU5kJmfL571veCX-sob8BSeWRiA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2755575794</pqid></control><display><type>article</type><title>Effects of high oxygen tension on healthy volunteer microcirculation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Cousin, Nicolas ; Goutay, Julien ; Girardie, Patrick ; Favory, Raphaël ; Drumez, Elodie ; Mathieu, Daniel ; Poissy, Julien ; Parmentier, Erika ; Duburcq, Thibault</creator><creatorcontrib>Cousin, Nicolas ; Goutay, Julien ; Girardie, Patrick ; Favory, Raphaël ; Drumez, Elodie ; Mathieu, Daniel ; Poissy, Julien ; Parmentier, Erika ; Duburcq, Thibault ; Unité de méthodologie – biostatistique et data management, CHU Lille, Lille, France ; Pôle de réanimation, hôpital Roger Salengro, CHU Lille, Lille, France</creatorcontrib><description>Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO₂). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P &lt; 0.001) and bradycardia (55 (7) beats·min⁻¹ vs 66 (8), P &lt; 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P &lt; 0.05) in response to increased PtcO₂ (104.0 (45.9) kPa vs 6.3 (2.4), P &lt; 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P &lt; 0.05). Microvascular reactivity was preserved in every condition. Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO₂ promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.</description><identifier>ISSN: 1833-3516</identifier><identifier>ISSN: 2209-1491</identifier><identifier>EISSN: 2209-1491</identifier><identifier>DOI: 10.28920/dhm52.4.260-270</identifier><identifier>PMID: 36525683</identifier><language>eng</language><publisher>Australia: The Journal of the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society</publisher><subject>Healthy Volunteers ; Hemodynamics - physiology ; Humans ; Hyperbaric Oxygenation - methods ; Hyperoxia ; Life Sciences ; Microcirculation - physiology ; Original ; Oxygen</subject><ispartof>Diving and Hyperbaric Medicine Journal, 2022-12, Vol.52 (4), p.260-270</ispartof><rights>Copyright: This article is the copyright of the authors who grant Diving and Hyperbaric Medicine a non-exclusive licence to publish the article in electronic and other forms.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright: © 2022 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017198/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10017198/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36525683$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04399073$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Cousin, Nicolas</creatorcontrib><creatorcontrib>Goutay, Julien</creatorcontrib><creatorcontrib>Girardie, Patrick</creatorcontrib><creatorcontrib>Favory, Raphaël</creatorcontrib><creatorcontrib>Drumez, Elodie</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Poissy, Julien</creatorcontrib><creatorcontrib>Parmentier, Erika</creatorcontrib><creatorcontrib>Duburcq, Thibault</creatorcontrib><creatorcontrib>Unité de méthodologie – biostatistique et data management, CHU Lille, Lille, France</creatorcontrib><creatorcontrib>Pôle de réanimation, hôpital Roger Salengro, CHU Lille, Lille, France</creatorcontrib><title>Effects of high oxygen tension on healthy volunteer microcirculation</title><title>Diving and Hyperbaric Medicine Journal</title><addtitle>Diving Hyperb Med</addtitle><description>Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO₂). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P &lt; 0.001) and bradycardia (55 (7) beats·min⁻¹ vs 66 (8), P &lt; 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P &lt; 0.05) in response to increased PtcO₂ (104.0 (45.9) kPa vs 6.3 (2.4), P &lt; 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P &lt; 0.05). Microvascular reactivity was preserved in every condition. Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO₂ promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.</description><subject>Healthy Volunteers</subject><subject>Hemodynamics - physiology</subject><subject>Humans</subject><subject>Hyperbaric Oxygenation - methods</subject><subject>Hyperoxia</subject><subject>Life Sciences</subject><subject>Microcirculation - physiology</subject><subject>Original</subject><subject>Oxygen</subject><issn>1833-3516</issn><issn>2209-1491</issn><issn>2209-1491</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUU1P20AQXVUgCJR7T5WP9OAw--X1niqUAqkUiQs9r_YzdmV7qdeOyL_vQlLUVhrNSDPvvdHMQ-gThiWpJYEb1_ScLNmSVFASAR_QghCQJWYSn6AFriktKcfVObpI6ScAZ7TiZ-g8Z8Krmi7Qt7sQvJ1SEUPRtNumiC_7rR-KyQ-pjUORo_G6m5p9sYvdPEzej0Xf2jHadrRzp6eM-ohOg-6SvzrWS_Tj_u5ptS43jw_fV7eb0lJGptKAx8YwEbTg4JzGxFXaEWKMsVYQGSwzjIGrpBGBGOydCNZSp0VtwWBJL9HXg-7zbHrvrB-mUXfqeWx7Pe5V1K36dzK0jdrGncIAWGBZZ4UvB4XmP976dqNee8ColCDoDmfs9XHbGH_NPk2qb5P1XacHH-ekiOCcCy4ky1A4QPNfUhp9eNfGoN6cUm9OKaayU5kJmfL571veCX-sob8BSeWRiA</recordid><startdate>20221220</startdate><enddate>20221220</enddate><creator>Cousin, Nicolas</creator><creator>Goutay, Julien</creator><creator>Girardie, Patrick</creator><creator>Favory, Raphaël</creator><creator>Drumez, Elodie</creator><creator>Mathieu, Daniel</creator><creator>Poissy, Julien</creator><creator>Parmentier, Erika</creator><creator>Duburcq, Thibault</creator><general>The Journal of the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20221220</creationdate><title>Effects of high oxygen tension on healthy volunteer microcirculation</title><author>Cousin, Nicolas ; Goutay, Julien ; Girardie, Patrick ; Favory, Raphaël ; Drumez, Elodie ; Mathieu, Daniel ; Poissy, Julien ; Parmentier, Erika ; Duburcq, Thibault</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-b0e1bb47fa750dda12d6ad22bbbcc729fc4b440d69b7f2b1ed7fcc3da78c0b193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Healthy Volunteers</topic><topic>Hemodynamics - physiology</topic><topic>Humans</topic><topic>Hyperbaric Oxygenation - methods</topic><topic>Hyperoxia</topic><topic>Life Sciences</topic><topic>Microcirculation - physiology</topic><topic>Original</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cousin, Nicolas</creatorcontrib><creatorcontrib>Goutay, Julien</creatorcontrib><creatorcontrib>Girardie, Patrick</creatorcontrib><creatorcontrib>Favory, Raphaël</creatorcontrib><creatorcontrib>Drumez, Elodie</creatorcontrib><creatorcontrib>Mathieu, Daniel</creatorcontrib><creatorcontrib>Poissy, Julien</creatorcontrib><creatorcontrib>Parmentier, Erika</creatorcontrib><creatorcontrib>Duburcq, Thibault</creatorcontrib><creatorcontrib>Unité de méthodologie – biostatistique et data management, CHU Lille, Lille, France</creatorcontrib><creatorcontrib>Pôle de réanimation, hôpital Roger Salengro, CHU Lille, Lille, France</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diving and Hyperbaric Medicine Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cousin, Nicolas</au><au>Goutay, Julien</au><au>Girardie, Patrick</au><au>Favory, Raphaël</au><au>Drumez, Elodie</au><au>Mathieu, Daniel</au><au>Poissy, Julien</au><au>Parmentier, Erika</au><au>Duburcq, Thibault</au><aucorp>Unité de méthodologie – biostatistique et data management, CHU Lille, Lille, France</aucorp><aucorp>Pôle de réanimation, hôpital Roger Salengro, CHU Lille, Lille, France</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of high oxygen tension on healthy volunteer microcirculation</atitle><jtitle>Diving and Hyperbaric Medicine Journal</jtitle><addtitle>Diving Hyperb Med</addtitle><date>2022-12-20</date><risdate>2022</risdate><volume>52</volume><issue>4</issue><spage>260</spage><epage>270</epage><pages>260-270</pages><issn>1833-3516</issn><issn>2209-1491</issn><eissn>2209-1491</eissn><abstract>Previous studies have highlighted hyperoxia-induced microcirculation modifications, but few have focused on hyperbaric oxygen (HBO) effects. Our primary objective was to explore hyperbaric hyperoxia effects on the microcirculation of healthy volunteers and investigate whether these modifications are adaptative or not. This single centre, open-label study included 15 healthy volunteers. Measurements were performed under five conditions: T0) baseline value (normobaric normoxia); T1) hyperbaric normoxia; T2) hyperbaric hyperoxia; T3) normobaric hyperoxia; T4) return to normobaric normoxia. Microcirculatory data were gathered via laser Doppler, near-infrared spectroscopy and transcutaneous oximetry (PtcO₂). Vascular-occlusion tests were performed at each step. We used transthoracic echocardiography and standard monitoring for haemodynamic investigation. Maximal alterations were observed under hyperbaric hyperoxia which led, in comparison with baseline, to arterial hypertension (mean arterial pressure 105 (SD 12) mmHg vs 95 (11), P &lt; 0.001) and bradycardia (55 (7) beats·min⁻¹ vs 66 (8), P &lt; 0.001) while cardiac output remained unchanged. Hyperbaric hyperoxia also led to microcirculatory vasoconstriction (rest flow 63 (74) vs 143 (73) perfusion units, P &lt; 0.05) in response to increased PtcO₂ (104.0 (45.9) kPa vs 6.3 (2.4), P &lt; 0.0001); and a decrease in laser Doppler parameters indicating vascular reserve (peak flow 125 (89) vs 233 (79) perfusion units, P &lt; 0.05). Microvascular reactivity was preserved in every condition. Hyperoxia significantly modifies healthy volunteer microcirculation especially during HBO exposure. The rise in PtcO₂ promotes an adaptative vasoconstrictive response to protect cellular integrity. Microvascular reactivity remains unaltered and vascular reserve is mobilised in proportion to the extent of the ischaemic stimulus.</abstract><cop>Australia</cop><pub>The Journal of the South Pacific Underwater Medicine Society and the European Underwater and Baromedical Society</pub><pmid>36525683</pmid><doi>10.28920/dhm52.4.260-270</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1833-3516
ispartof Diving and Hyperbaric Medicine Journal, 2022-12, Vol.52 (4), p.260-270
issn 1833-3516
2209-1491
2209-1491
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10017198
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Healthy Volunteers
Hemodynamics - physiology
Humans
Hyperbaric Oxygenation - methods
Hyperoxia
Life Sciences
Microcirculation - physiology
Original
Oxygen
title Effects of high oxygen tension on healthy volunteer microcirculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T14%3A09%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20high%20oxygen%20tension%20on%20healthy%20volunteer%20microcirculation&rft.jtitle=Diving%20and%20Hyperbaric%20Medicine%20Journal&rft.au=Cousin,%20Nicolas&rft.aucorp=Unit%C3%A9%20de%20m%C3%A9thodologie%20%E2%80%93%20biostatistique%20et%20data%20management,%20CHU%20Lille,%20Lille,%20France&rft.date=2022-12-20&rft.volume=52&rft.issue=4&rft.spage=260&rft.epage=270&rft.pages=260-270&rft.issn=1833-3516&rft.eissn=2209-1491&rft_id=info:doi/10.28920/dhm52.4.260-270&rft_dat=%3Cproquest_pubme%3E2755575794%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2755575794&rft_id=info:pmid/36525683&rfr_iscdi=true