Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery
During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte....
Gespeichert in:
Veröffentlicht in: | RSC advances 2023-03, Vol.13 (12), p.8299-8306 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8306 |
---|---|
container_issue | 12 |
container_start_page | 8299 |
container_title | RSC advances |
container_volume | 13 |
creator | Dasarathan, Suriyakumar Sung, Junghwan Jeong-Won, Hong Yung-Soo, Jo Kim, Byung Gon You-Jin, Lee Hae-Young, Choi Jun-Woo, Park Kim, Doohun |
description | During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries. |
doi_str_mv | 10.1039/d3ra00349c |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10010071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854427807</sourcerecordid><originalsourceid>FETCH-LOGICAL-p308t-8104d337c19fa740c19d3aaecec28021c004abfeb7f99422b6eee247001fef1d3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0kJKrCwhNYYmEJXP80PxNCFQWkSh0oc3Di69YocYKdIGXjHXhDngQjusBdznA_fTqHkHMGVwxEca2FVwBCFvURmXGQacIhLU7IWQivEC9dMJ6yGXlZecQkDMpp63Z0azecOuW6nVchTHQYq7FRnu6nyltNW2wrrxxS03nad80UxsZYjXTwqu9_BNbRtf36-HyilRoG9NMpOTaqCXh2yDl5Xt1tlw_JenP_uLxdJ72AfEhyBlILkdWsMCqTEFMLpbDGmufAWQ0gVWWwykxRSM6rFBG5zACYQcO0mJObX28_Vi3qGl3s1JS9t63yU9kpW_79OLsvd917yaICIGPRcHkw-O5txDCUrQ01Nk0c3I2h5PlCSp7lkEX04h_62o3exX1lBNKFiI1BfAP-Gnvm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786530210</pqid></control><display><type>article</type><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</creator><creatorcontrib>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</creatorcontrib><description>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra00349c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anatase ; Chemistry ; Crystallites ; Engraving ; High aspect ratio ; Lithium sulfur batteries ; Membranes ; Perturbation ; Polysulfides ; Thickness ; Titanium dioxide ; Trapping ; Tubes</subject><ispartof>RSC advances, 2023-03, Vol.13 (12), p.8299-8306</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010071/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010071/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Dasarathan, Suriyakumar</creatorcontrib><creatorcontrib>Sung, Junghwan</creatorcontrib><creatorcontrib>Jeong-Won, Hong</creatorcontrib><creatorcontrib>Yung-Soo, Jo</creatorcontrib><creatorcontrib>Kim, Byung Gon</creatorcontrib><creatorcontrib>You-Jin, Lee</creatorcontrib><creatorcontrib>Hae-Young, Choi</creatorcontrib><creatorcontrib>Jun-Woo, Park</creatorcontrib><creatorcontrib>Kim, Doohun</creatorcontrib><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><title>RSC advances</title><description>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</description><subject>Anatase</subject><subject>Chemistry</subject><subject>Crystallites</subject><subject>Engraving</subject><subject>High aspect ratio</subject><subject>Lithium sulfur batteries</subject><subject>Membranes</subject><subject>Perturbation</subject><subject>Polysulfides</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Trapping</subject><subject>Tubes</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0kJKrCwhNYYmEJXP80PxNCFQWkSh0oc3Di69YocYKdIGXjHXhDngQjusBdznA_fTqHkHMGVwxEca2FVwBCFvURmXGQacIhLU7IWQivEC9dMJ6yGXlZecQkDMpp63Z0azecOuW6nVchTHQYq7FRnu6nyltNW2wrrxxS03nad80UxsZYjXTwqu9_BNbRtf36-HyilRoG9NMpOTaqCXh2yDl5Xt1tlw_JenP_uLxdJ72AfEhyBlILkdWsMCqTEFMLpbDGmufAWQ0gVWWwykxRSM6rFBG5zACYQcO0mJObX28_Vi3qGl3s1JS9t63yU9kpW_79OLsvd917yaICIGPRcHkw-O5txDCUrQ01Nk0c3I2h5PlCSp7lkEX04h_62o3exX1lBNKFiI1BfAP-Gnvm</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Dasarathan, Suriyakumar</creator><creator>Sung, Junghwan</creator><creator>Jeong-Won, Hong</creator><creator>Yung-Soo, Jo</creator><creator>Kim, Byung Gon</creator><creator>You-Jin, Lee</creator><creator>Hae-Young, Choi</creator><creator>Jun-Woo, Park</creator><creator>Kim, Doohun</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230313</creationdate><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><author>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p308t-8104d337c19fa740c19d3aaecec28021c004abfeb7f99422b6eee247001fef1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Chemistry</topic><topic>Crystallites</topic><topic>Engraving</topic><topic>High aspect ratio</topic><topic>Lithium sulfur batteries</topic><topic>Membranes</topic><topic>Perturbation</topic><topic>Polysulfides</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Trapping</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasarathan, Suriyakumar</creatorcontrib><creatorcontrib>Sung, Junghwan</creatorcontrib><creatorcontrib>Jeong-Won, Hong</creatorcontrib><creatorcontrib>Yung-Soo, Jo</creatorcontrib><creatorcontrib>Kim, Byung Gon</creatorcontrib><creatorcontrib>You-Jin, Lee</creatorcontrib><creatorcontrib>Hae-Young, Choi</creatorcontrib><creatorcontrib>Jun-Woo, Park</creatorcontrib><creatorcontrib>Kim, Doohun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasarathan, Suriyakumar</au><au>Sung, Junghwan</au><au>Jeong-Won, Hong</au><au>Yung-Soo, Jo</au><au>Kim, Byung Gon</au><au>You-Jin, Lee</au><au>Hae-Young, Choi</au><au>Jun-Woo, Park</au><au>Kim, Doohun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</atitle><jtitle>RSC advances</jtitle><date>2023-03-13</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>8299</spage><epage>8306</epage><pages>8299-8306</pages><eissn>2046-2069</eissn><abstract>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ra00349c</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2046-2069 |
ispartof | RSC advances, 2023-03, Vol.13 (12), p.8299-8306 |
issn | 2046-2069 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10010071 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Anatase Chemistry Crystallites Engraving High aspect ratio Lithium sulfur batteries Membranes Perturbation Polysulfides Thickness Titanium dioxide Trapping Tubes |
title | Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-standing%20TiO2%20nanograssy%20tubular%20hybrid%20membrane%20for%20polysulfide%20trapping%20in%20Li%E2%80%93S%20battery&rft.jtitle=RSC%20advances&rft.au=Dasarathan,%20Suriyakumar&rft.date=2023-03-13&rft.volume=13&rft.issue=12&rft.spage=8299&rft.epage=8306&rft.pages=8299-8306&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra00349c&rft_dat=%3Cproquest_pubme%3E2854427807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786530210&rft_id=info:pmid/&rfr_iscdi=true |