Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery

During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:RSC advances 2023-03, Vol.13 (12), p.8299-8306
Hauptverfasser: Dasarathan, Suriyakumar, Sung, Junghwan, Jeong-Won, Hong, Yung-Soo, Jo, Kim, Byung Gon, You-Jin, Lee, Hae-Young, Choi, Jun-Woo, Park, Kim, Doohun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8306
container_issue 12
container_start_page 8299
container_title RSC advances
container_volume 13
creator Dasarathan, Suriyakumar
Sung, Junghwan
Jeong-Won, Hong
Yung-Soo, Jo
Kim, Byung Gon
You-Jin, Lee
Hae-Young, Choi
Jun-Woo, Park
Kim, Doohun
description During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.
doi_str_mv 10.1039/d3ra00349c
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10010071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2854427807</sourcerecordid><originalsourceid>FETCH-LOGICAL-p308t-8104d337c19fa740c19d3aaecec28021c004abfeb7f99422b6eee247001fef1d3</originalsourceid><addsrcrecordid>eNpdj71OwzAUhS0kJKrCwhNYYmEJXP80PxNCFQWkSh0oc3Di69YocYKdIGXjHXhDngQjusBdznA_fTqHkHMGVwxEca2FVwBCFvURmXGQacIhLU7IWQivEC9dMJ6yGXlZecQkDMpp63Z0azecOuW6nVchTHQYq7FRnu6nyltNW2wrrxxS03nad80UxsZYjXTwqu9_BNbRtf36-HyilRoG9NMpOTaqCXh2yDl5Xt1tlw_JenP_uLxdJ72AfEhyBlILkdWsMCqTEFMLpbDGmufAWQ0gVWWwykxRSM6rFBG5zACYQcO0mJObX28_Vi3qGl3s1JS9t63yU9kpW_79OLsvd917yaICIGPRcHkw-O5txDCUrQ01Nk0c3I2h5PlCSp7lkEX04h_62o3exX1lBNKFiI1BfAP-Gnvm</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786530210</pqid></control><display><type>article</type><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</creator><creatorcontrib>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</creatorcontrib><description>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</description><identifier>EISSN: 2046-2069</identifier><identifier>DOI: 10.1039/d3ra00349c</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anatase ; Chemistry ; Crystallites ; Engraving ; High aspect ratio ; Lithium sulfur batteries ; Membranes ; Perturbation ; Polysulfides ; Thickness ; Titanium dioxide ; Trapping ; Tubes</subject><ispartof>RSC advances, 2023-03, Vol.13 (12), p.8299-8306</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><rights>This journal is © The Royal Society of Chemistry 2023 The Royal Society of Chemistry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010071/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10010071/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,53789,53791</link.rule.ids></links><search><creatorcontrib>Dasarathan, Suriyakumar</creatorcontrib><creatorcontrib>Sung, Junghwan</creatorcontrib><creatorcontrib>Jeong-Won, Hong</creatorcontrib><creatorcontrib>Yung-Soo, Jo</creatorcontrib><creatorcontrib>Kim, Byung Gon</creatorcontrib><creatorcontrib>You-Jin, Lee</creatorcontrib><creatorcontrib>Hae-Young, Choi</creatorcontrib><creatorcontrib>Jun-Woo, Park</creatorcontrib><creatorcontrib>Kim, Doohun</creatorcontrib><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><title>RSC advances</title><description>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</description><subject>Anatase</subject><subject>Chemistry</subject><subject>Crystallites</subject><subject>Engraving</subject><subject>High aspect ratio</subject><subject>Lithium sulfur batteries</subject><subject>Membranes</subject><subject>Perturbation</subject><subject>Polysulfides</subject><subject>Thickness</subject><subject>Titanium dioxide</subject><subject>Trapping</subject><subject>Tubes</subject><issn>2046-2069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdj71OwzAUhS0kJKrCwhNYYmEJXP80PxNCFQWkSh0oc3Di69YocYKdIGXjHXhDngQjusBdznA_fTqHkHMGVwxEca2FVwBCFvURmXGQacIhLU7IWQivEC9dMJ6yGXlZecQkDMpp63Z0azecOuW6nVchTHQYq7FRnu6nyltNW2wrrxxS03nad80UxsZYjXTwqu9_BNbRtf36-HyilRoG9NMpOTaqCXh2yDl5Xt1tlw_JenP_uLxdJ72AfEhyBlILkdWsMCqTEFMLpbDGmufAWQ0gVWWwykxRSM6rFBG5zACYQcO0mJObX28_Vi3qGl3s1JS9t63yU9kpW_79OLsvd917yaICIGPRcHkw-O5txDCUrQ01Nk0c3I2h5PlCSp7lkEX04h_62o3exX1lBNKFiI1BfAP-Gnvm</recordid><startdate>20230313</startdate><enddate>20230313</enddate><creator>Dasarathan, Suriyakumar</creator><creator>Sung, Junghwan</creator><creator>Jeong-Won, Hong</creator><creator>Yung-Soo, Jo</creator><creator>Kim, Byung Gon</creator><creator>You-Jin, Lee</creator><creator>Hae-Young, Choi</creator><creator>Jun-Woo, Park</creator><creator>Kim, Doohun</creator><general>Royal Society of Chemistry</general><general>The Royal Society of Chemistry</general><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20230313</creationdate><title>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</title><author>Dasarathan, Suriyakumar ; Sung, Junghwan ; Jeong-Won, Hong ; Yung-Soo, Jo ; Kim, Byung Gon ; You-Jin, Lee ; Hae-Young, Choi ; Jun-Woo, Park ; Kim, Doohun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p308t-8104d337c19fa740c19d3aaecec28021c004abfeb7f99422b6eee247001fef1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anatase</topic><topic>Chemistry</topic><topic>Crystallites</topic><topic>Engraving</topic><topic>High aspect ratio</topic><topic>Lithium sulfur batteries</topic><topic>Membranes</topic><topic>Perturbation</topic><topic>Polysulfides</topic><topic>Thickness</topic><topic>Titanium dioxide</topic><topic>Trapping</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dasarathan, Suriyakumar</creatorcontrib><creatorcontrib>Sung, Junghwan</creatorcontrib><creatorcontrib>Jeong-Won, Hong</creatorcontrib><creatorcontrib>Yung-Soo, Jo</creatorcontrib><creatorcontrib>Kim, Byung Gon</creatorcontrib><creatorcontrib>You-Jin, Lee</creatorcontrib><creatorcontrib>Hae-Young, Choi</creatorcontrib><creatorcontrib>Jun-Woo, Park</creatorcontrib><creatorcontrib>Kim, Doohun</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>RSC advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dasarathan, Suriyakumar</au><au>Sung, Junghwan</au><au>Jeong-Won, Hong</au><au>Yung-Soo, Jo</au><au>Kim, Byung Gon</au><au>You-Jin, Lee</au><au>Hae-Young, Choi</au><au>Jun-Woo, Park</au><au>Kim, Doohun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery</atitle><jtitle>RSC advances</jtitle><date>2023-03-13</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>8299</spage><epage>8306</epage><pages>8299-8306</pages><eissn>2046-2069</eissn><abstract>During the growth of anodic TiO2 nanotubes with a high layer thickness of greater than 20 μm, “nanograss” structures are typically formed on the outermost surface. This happens due to the fact that the engraving of the oxide tubes arises during prolonged exposure to an F- ion containing electrolyte. These TiO2 nanotubular layers have a high aspect ratio with astonishing bundles of nanograss structures on the tube top and especially a high surface area with anatase crystallites in the tubes. By two-step anodization in synergy with the hybridization of a rubber polymer binder, freestanding nanotubular layers consisting of nanograssy surfaces with nano-crystalline particles in the tubes were successfully obtained. Under the highly efficient polysulfide trapping and electrolyte perturbation, this nanotubular hybrid membrane could deliver an enriched performance with a capacity of 618 mA h g−1 after 100 cycles at 0.1C in Li–S batteries.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ra00349c</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2046-2069
ispartof RSC advances, 2023-03, Vol.13 (12), p.8299-8306
issn 2046-2069
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10010071
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anatase
Chemistry
Crystallites
Engraving
High aspect ratio
Lithium sulfur batteries
Membranes
Perturbation
Polysulfides
Thickness
Titanium dioxide
Trapping
Tubes
title Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li–S battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T17%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free-standing%20TiO2%20nanograssy%20tubular%20hybrid%20membrane%20for%20polysulfide%20trapping%20in%20Li%E2%80%93S%20battery&rft.jtitle=RSC%20advances&rft.au=Dasarathan,%20Suriyakumar&rft.date=2023-03-13&rft.volume=13&rft.issue=12&rft.spage=8299&rft.epage=8306&rft.pages=8299-8306&rft.eissn=2046-2069&rft_id=info:doi/10.1039/d3ra00349c&rft_dat=%3Cproquest_pubme%3E2854427807%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2786530210&rft_id=info:pmid/&rfr_iscdi=true