DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System

Using modern methods of quantum chemistry, a theoretical substantiation of the high -stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler-Natta system was carried out. For DFT and ONIOM simulation, the most -stereospecific active site of the catalytic system was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymers 2023-02, Vol.15 (5), p.1166
Hauptverfasser: Masliy, Alexey N, Akhmetov, Ildar G, Kuznetsov, Andrey M, Davletbaeva, Ilsiya M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1166
container_title Polymers
container_volume 15
creator Masliy, Alexey N
Akhmetov, Ildar G
Kuznetsov, Andrey M
Davletbaeva, Ilsiya M
description Using modern methods of quantum chemistry, a theoretical substantiation of the high -stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler-Natta system was carried out. For DFT and ONIOM simulation, the most -stereospecific active site of the catalytic system was used. By analyzing the total energy, as well as the enthalpy and Gibbs free energy of the simulated catalytically active centers, it was found that the coordination of 1,3-butadiene in the -form was more favorable than in the -form by 11 kJ/mol. However, as a result of π-allylic insertion mechanism modeling, it was found that the activation energy of -1,3-butadiene insertion into the π-allylic neodymium-carbon bond of the terminal group on the reactive growing chain was 10-15 kJ/mol lower than the activation energy of -1,3-butadiene insertion. The activation energies did not change when both -1,4-butadiene and -1,4-butadiene were used for modeling. That is, 1,4- -regulation was due not to the primary coordination of 1,3-butadiene in its -configuration, but to its lower energy of attachment to the active site. The obtained results allowed us to clarify the mechanism of the high -stereospecificity of 1,3-butadiene polymerization by the neodymium-based Ziegler-Natta system.
doi_str_mv 10.3390/polym15051166
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10007399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A741844017</galeid><sourcerecordid>A741844017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-58d4b73d40bf2fcce44c32db1317a7d23188a2654493561021016e00915454223</originalsourceid><addsrcrecordid>eNpdUU1v1DAQtRCIVkuPXFEkLhxI6884OaF2oVCp7CK1XLhYTjxZvLLjJXaQ0l-PV9tWLbassWbevPl4CL0l-JSxBp_tgps9EVgQUlUv0DHFkpWcVfjlk_8ROolxi_PhoqqIfI2OWNVgzrE8RtvPl7eFHkyxXl2tvxc31k9OJxuGIvQF-cjKiylpY2GA4se-GIz27hBf6qTdfAemaOdiBcHM3k6-vNAxu35Z2DgYy5VOSRc3c0zg36BXvXYRTu7tAv28_HK7_FZer79eLc-vy44LkUpRG95KZjhue9p3HXDeMWpawojU0lBG6lrTSnDeMFERTAkmFWDcEMEFp5Qt0KcD725qPZgOhjRqp3aj9XqcVdBWPY8M9rfahL-K5BVJ1jSZ4cM9wxj-TBCT8jZ24JweIExRUVnnwiLvPUPf_wfdhmkc8nx7lKC56_wW6PSA2mgHyg59yIW7fA1424UBepv955KTOstCZE4oDwndGGIcoX9sn2C1l149kz7j3z2d-RH9IDT7B9fVp-c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2785213121</pqid></control><display><type>article</type><title>DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><source>PubMed Central Open Access</source><creator>Masliy, Alexey N ; Akhmetov, Ildar G ; Kuznetsov, Andrey M ; Davletbaeva, Ilsiya M</creator><creatorcontrib>Masliy, Alexey N ; Akhmetov, Ildar G ; Kuznetsov, Andrey M ; Davletbaeva, Ilsiya M</creatorcontrib><description>Using modern methods of quantum chemistry, a theoretical substantiation of the high -stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler-Natta system was carried out. For DFT and ONIOM simulation, the most -stereospecific active site of the catalytic system was used. By analyzing the total energy, as well as the enthalpy and Gibbs free energy of the simulated catalytically active centers, it was found that the coordination of 1,3-butadiene in the -form was more favorable than in the -form by 11 kJ/mol. However, as a result of π-allylic insertion mechanism modeling, it was found that the activation energy of -1,3-butadiene insertion into the π-allylic neodymium-carbon bond of the terminal group on the reactive growing chain was 10-15 kJ/mol lower than the activation energy of -1,3-butadiene insertion. The activation energies did not change when both -1,4-butadiene and -1,4-butadiene were used for modeling. That is, 1,4- -regulation was due not to the primary coordination of 1,3-butadiene in its -configuration, but to its lower energy of attachment to the active site. The obtained results allowed us to clarify the mechanism of the high -stereospecificity of 1,3-butadiene polymerization by the neodymium-based Ziegler-Natta system.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym15051166</identifier><identifier>PMID: 36904407</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Activation energy ; Aluminum ; Analysis ; Butadiene ; Chlorine ; Coordination ; Enthalpy ; Geometry ; Gibbs free energy ; Industrial production ; Insertion ; Magnetic alloys ; Modelling ; Neodymium ; Optimization ; Polymerization ; Polymers ; Quantum chemistry ; Simulation ; Symmetry</subject><ispartof>Polymers, 2023-02, Vol.15 (5), p.1166</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2023 by the authors. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-58d4b73d40bf2fcce44c32db1317a7d23188a2654493561021016e00915454223</citedby><cites>FETCH-LOGICAL-c455t-58d4b73d40bf2fcce44c32db1317a7d23188a2654493561021016e00915454223</cites><orcidid>0000-0001-7494-8089 ; 0000-0001-5677-592X ; 0000-0001-9471-6891</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007399/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10007399/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36904407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Masliy, Alexey N</creatorcontrib><creatorcontrib>Akhmetov, Ildar G</creatorcontrib><creatorcontrib>Kuznetsov, Andrey M</creatorcontrib><creatorcontrib>Davletbaeva, Ilsiya M</creatorcontrib><title>DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System</title><title>Polymers</title><addtitle>Polymers (Basel)</addtitle><description>Using modern methods of quantum chemistry, a theoretical substantiation of the high -stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler-Natta system was carried out. For DFT and ONIOM simulation, the most -stereospecific active site of the catalytic system was used. By analyzing the total energy, as well as the enthalpy and Gibbs free energy of the simulated catalytically active centers, it was found that the coordination of 1,3-butadiene in the -form was more favorable than in the -form by 11 kJ/mol. However, as a result of π-allylic insertion mechanism modeling, it was found that the activation energy of -1,3-butadiene insertion into the π-allylic neodymium-carbon bond of the terminal group on the reactive growing chain was 10-15 kJ/mol lower than the activation energy of -1,3-butadiene insertion. The activation energies did not change when both -1,4-butadiene and -1,4-butadiene were used for modeling. That is, 1,4- -regulation was due not to the primary coordination of 1,3-butadiene in its -configuration, but to its lower energy of attachment to the active site. The obtained results allowed us to clarify the mechanism of the high -stereospecificity of 1,3-butadiene polymerization by the neodymium-based Ziegler-Natta system.</description><subject>Activation energy</subject><subject>Aluminum</subject><subject>Analysis</subject><subject>Butadiene</subject><subject>Chlorine</subject><subject>Coordination</subject><subject>Enthalpy</subject><subject>Geometry</subject><subject>Gibbs free energy</subject><subject>Industrial production</subject><subject>Insertion</subject><subject>Magnetic alloys</subject><subject>Modelling</subject><subject>Neodymium</subject><subject>Optimization</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>Quantum chemistry</subject><subject>Simulation</subject><subject>Symmetry</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdUU1v1DAQtRCIVkuPXFEkLhxI6884OaF2oVCp7CK1XLhYTjxZvLLjJXaQ0l-PV9tWLbassWbevPl4CL0l-JSxBp_tgps9EVgQUlUv0DHFkpWcVfjlk_8ROolxi_PhoqqIfI2OWNVgzrE8RtvPl7eFHkyxXl2tvxc31k9OJxuGIvQF-cjKiylpY2GA4se-GIz27hBf6qTdfAemaOdiBcHM3k6-vNAxu35Z2DgYy5VOSRc3c0zg36BXvXYRTu7tAv28_HK7_FZer79eLc-vy44LkUpRG95KZjhue9p3HXDeMWpawojU0lBG6lrTSnDeMFERTAkmFWDcEMEFp5Qt0KcD725qPZgOhjRqp3aj9XqcVdBWPY8M9rfahL-K5BVJ1jSZ4cM9wxj-TBCT8jZ24JweIExRUVnnwiLvPUPf_wfdhmkc8nx7lKC56_wW6PSA2mgHyg59yIW7fA1424UBepv955KTOstCZE4oDwndGGIcoX9sn2C1l149kz7j3z2d-RH9IDT7B9fVp-c</recordid><startdate>20230225</startdate><enddate>20230225</enddate><creator>Masliy, Alexey N</creator><creator>Akhmetov, Ildar G</creator><creator>Kuznetsov, Andrey M</creator><creator>Davletbaeva, Ilsiya M</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7494-8089</orcidid><orcidid>https://orcid.org/0000-0001-5677-592X</orcidid><orcidid>https://orcid.org/0000-0001-9471-6891</orcidid></search><sort><creationdate>20230225</creationdate><title>DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System</title><author>Masliy, Alexey N ; Akhmetov, Ildar G ; Kuznetsov, Andrey M ; Davletbaeva, Ilsiya M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-58d4b73d40bf2fcce44c32db1317a7d23188a2654493561021016e00915454223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Activation energy</topic><topic>Aluminum</topic><topic>Analysis</topic><topic>Butadiene</topic><topic>Chlorine</topic><topic>Coordination</topic><topic>Enthalpy</topic><topic>Geometry</topic><topic>Gibbs free energy</topic><topic>Industrial production</topic><topic>Insertion</topic><topic>Magnetic alloys</topic><topic>Modelling</topic><topic>Neodymium</topic><topic>Optimization</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>Quantum chemistry</topic><topic>Simulation</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masliy, Alexey N</creatorcontrib><creatorcontrib>Akhmetov, Ildar G</creatorcontrib><creatorcontrib>Kuznetsov, Andrey M</creatorcontrib><creatorcontrib>Davletbaeva, Ilsiya M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masliy, Alexey N</au><au>Akhmetov, Ildar G</au><au>Kuznetsov, Andrey M</au><au>Davletbaeva, Ilsiya M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System</atitle><jtitle>Polymers</jtitle><addtitle>Polymers (Basel)</addtitle><date>2023-02-25</date><risdate>2023</risdate><volume>15</volume><issue>5</issue><spage>1166</spage><pages>1166-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Using modern methods of quantum chemistry, a theoretical substantiation of the high -stereospecificity of 1,3-butadiene polymerization catalyzed by the neodymium-based Ziegler-Natta system was carried out. For DFT and ONIOM simulation, the most -stereospecific active site of the catalytic system was used. By analyzing the total energy, as well as the enthalpy and Gibbs free energy of the simulated catalytically active centers, it was found that the coordination of 1,3-butadiene in the -form was more favorable than in the -form by 11 kJ/mol. However, as a result of π-allylic insertion mechanism modeling, it was found that the activation energy of -1,3-butadiene insertion into the π-allylic neodymium-carbon bond of the terminal group on the reactive growing chain was 10-15 kJ/mol lower than the activation energy of -1,3-butadiene insertion. The activation energies did not change when both -1,4-butadiene and -1,4-butadiene were used for modeling. That is, 1,4- -regulation was due not to the primary coordination of 1,3-butadiene in its -configuration, but to its lower energy of attachment to the active site. The obtained results allowed us to clarify the mechanism of the high -stereospecificity of 1,3-butadiene polymerization by the neodymium-based Ziegler-Natta system.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>36904407</pmid><doi>10.3390/polym15051166</doi><orcidid>https://orcid.org/0000-0001-7494-8089</orcidid><orcidid>https://orcid.org/0000-0001-5677-592X</orcidid><orcidid>https://orcid.org/0000-0001-9471-6891</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4360
ispartof Polymers, 2023-02, Vol.15 (5), p.1166
issn 2073-4360
2073-4360
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_10007399
source MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; EZB Electronic Journals Library; PubMed Central Open Access
subjects Activation energy
Aluminum
Analysis
Butadiene
Chlorine
Coordination
Enthalpy
Geometry
Gibbs free energy
Industrial production
Insertion
Magnetic alloys
Modelling
Neodymium
Optimization
Polymerization
Polymers
Quantum chemistry
Simulation
Symmetry
title DFT and ONIOM Simulation of 1,3-Butadiene Polymerization Catalyzed by Neodymium-Based Ziegler-Natta System
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A47%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DFT%20and%20ONIOM%20Simulation%20of%201,3-Butadiene%20Polymerization%20Catalyzed%20by%20Neodymium-Based%20Ziegler-Natta%20System&rft.jtitle=Polymers&rft.au=Masliy,%20Alexey%20N&rft.date=2023-02-25&rft.volume=15&rft.issue=5&rft.spage=1166&rft.pages=1166-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym15051166&rft_dat=%3Cgale_pubme%3EA741844017%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2785213121&rft_id=info:pmid/36904407&rft_galeid=A741844017&rfr_iscdi=true