A Deep Learning Approach for Dengue Fever Prediction in Malaysia Using LSTM with Spatial Attention

This research aims to predict dengue fever cases in Malaysia using machine learning techniques. A dataset consisting of weekly dengue cases at the state level in Malaysia from 2010 to 2016 was obtained from the Malaysia Open Data website and includes variables such as climate, geography, and demogra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2023-02, Vol.20 (5), p.4130
Hauptverfasser: Majeed, Mokhalad A, Shafri, Helmi Zulhaidi Mohd, Zulkafli, Zed, Wayayok, Aimrun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research aims to predict dengue fever cases in Malaysia using machine learning techniques. A dataset consisting of weekly dengue cases at the state level in Malaysia from 2010 to 2016 was obtained from the Malaysia Open Data website and includes variables such as climate, geography, and demographics. Six different long short-term memory (LSTM) models were developed and compared for dengue prediction in Malaysia: LSTM, stacked LSTM (S-LSTM), LSTM with temporal attention (TA-LSTM), S-LSTM with temporal attention (STA-LSTM), LSTM with spatial attention (SA-LSTM), and S-LSTM with spatial attention (SSA-LSTM). The models were trained and evaluated on a dataset of monthly dengue cases in Malaysia from 2010 to 2016, with the task of predicting the number of dengue cases based on various climate, topographic, demographic, and land-use variables. The SSA-LSTM model, which used both stacked LSTM layers and spatial attention, performed the best, with an average root mean squared error (RMSE) of 3.17 across all lookback periods. When compared to three benchmark models (SVM, DT, ANN), the SSA-LSTM model had a significantly lower average RMSE. The SSA-LSTM model also performed well in different states in Malaysia, with RMSE values ranging from 2.91 to 4.55. When comparing temporal and spatial attention models, the spatial models generally performed better at predicting dengue cases. The SSA-LSTM model was also found to perform well at different prediction horizons, with the lowest RMSE at 4- and 5-month lookback periods. Overall, the results suggest that the SSA-LSTM model is effective at predicting dengue cases in Malaysia.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph20054130