Biodegradation of aromatic hydrocarbons in an extremely acidic environment

The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1998-11, Vol.64 (11), p.4180-4184
Hauptverfasser: Stapleton, R.D. (University of Tennessee, Knoxville, TN.), Savage, D.C, Sayler, G.S, Stacey, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4184
container_issue 11
container_start_page 4180
container_title Applied and Environmental Microbiology
container_volume 64
creator Stapleton, R.D. (University of Tennessee, Knoxville, TN.)
Savage, D.C
Sayler, G.S
Stacey, G
description The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values
doi_str_mv 10.1128/aem.64.11.4180-4184.1998
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9797263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1859173854</sourcerecordid><originalsourceid>FETCH-LOGICAL-a643t-862a68fe68d763b07190a86373d684a4a55dc37dbbb893760309c11362f8454d3</originalsourceid><addsrcrecordid>eNqFUktvFDEMjhCobAs_AWmEEOIyS16Tx4FDW5WXijhAz5EnyeymmklKslvYf98sHbWFA-Tg2PL3-XPsINQQvCSEqrfgp6Xg1V9yonBbTQ20Vo_QgmCt2o4x8RgtMNa6pZTjp-iwlEuMMcdCHaADLbWkgi3Q55OQnF9lcLAJKTZpaCCnqQa2We9cThZyn2JpQmwgNv7XJvvJj7sGbHAV4-N1yClOPm6eoScDjMU_n-8jdPH-7Pvpx_b864dPp8fnLQjONq0SFIQavFBOCtZjSTQGJZhkTigOHLrOWSZd3_dKMykww9oSwgQdFO-4Y0fo3W3dq20_eWerdIbRXOUwQd6ZBMH8mYlhbVbp2hAsBO0q_83Mz-nH1peNmUKxfhwh-rQthqhOE8lUxyv09b-hkqp62P-BnGvNO1mBL_8CXqZtjnVehuJOcy7EXlbdgmxOpWQ_3D2OYLPfvzk--2IEr77Z739valD3X6kvHg7njjgvvOZfzXkoFsYhQ7Sh3NeXhOLfM5rbXIfV-mfI3kCZTP11D1TvtQZIBla51rn4VrvQGAsiJbsBBbLMkA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205944664</pqid></control><display><type>article</type><title>Biodegradation of aromatic hydrocarbons in an extremely acidic environment</title><source>American Society for Microbiology</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Stapleton, R.D. (University of Tennessee, Knoxville, TN.) ; Savage, D.C ; Sayler, G.S ; Stacey, G</creator><creatorcontrib>Stapleton, R.D. (University of Tennessee, Knoxville, TN.) ; Savage, D.C ; Sayler, G.S ; Stacey, G</creatorcontrib><description>The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.64.11.4180-4184.1998</identifier><identifier>PMID: 9797263</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Applied sciences ; AROMATIC HYDROCARBONS ; BACTERIA ; BIODEGRADACION ; BIODEGRADATION ; Biodegradation of pollutants ; Biological and medical sciences ; Biotechnology ; CHAMPIGNON DU SOL ; Decontamination. Miscellaneous ; Environment ; Environment and pollution ; Environmental and Public Health Microbiology ; Exact sciences and technology ; FLORA DEL SUELO ; FLORE DU SOL ; Fundamental and applied biological sciences. Psychology ; GENBANK/AF082659 ; GENBANK/AF082660 ; HIDROCARBUROS ; HIDROCARBUROS AROMATICOS ; HONGOS DEL SUELO ; HYDROCARBONS ; HYDROCARBURE ; HYDROCARBURE AROMATIQUE ; Industrial applications and implications. Economical aspects ; Microbiology ; MICROORGANISME THERMOPHILE ; MICROORGANISMOS TERMOFILOS ; MOLECULAR SEQUENCE DATA ; NUCLEOTIDE SEQUENCE ; Pollution ; POLYCYCLIC HYDROCARBONS ; SECUENCIA NUCLEOTIDICA ; SEQUENCE NUCLEOTIDIQUE ; Soil and sediments pollution ; SOIL FLORA ; SOIL FUNGI ; Soils ; THERMOPHILIC MICROORGANISMS</subject><ispartof>Applied and Environmental Microbiology, 1998-11, Vol.64 (11), p.4180-4184</ispartof><rights>1999 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Nov 1998</rights><rights>Copyright © 1998, American Society for Microbiology 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a643t-862a68fe68d763b07190a86373d684a4a55dc37dbbb893760309c11362f8454d3</citedby><cites>FETCH-LOGICAL-a643t-862a68fe68d763b07190a86373d684a4a55dc37dbbb893760309c11362f8454d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC106625/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC106625/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3175,3176,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1712025$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9797263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Stapleton, R.D. (University of Tennessee, Knoxville, TN.)</creatorcontrib><creatorcontrib>Savage, D.C</creatorcontrib><creatorcontrib>Sayler, G.S</creatorcontrib><creatorcontrib>Stacey, G</creatorcontrib><title>Biodegradation of aromatic hydrocarbons in an extremely acidic environment</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values</description><subject>Applied sciences</subject><subject>AROMATIC HYDROCARBONS</subject><subject>BACTERIA</subject><subject>BIODEGRADACION</subject><subject>BIODEGRADATION</subject><subject>Biodegradation of pollutants</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>CHAMPIGNON DU SOL</subject><subject>Decontamination. Miscellaneous</subject><subject>Environment</subject><subject>Environment and pollution</subject><subject>Environmental and Public Health Microbiology</subject><subject>Exact sciences and technology</subject><subject>FLORA DEL SUELO</subject><subject>FLORE DU SOL</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENBANK/AF082659</subject><subject>GENBANK/AF082660</subject><subject>HIDROCARBUROS</subject><subject>HIDROCARBUROS AROMATICOS</subject><subject>HONGOS DEL SUELO</subject><subject>HYDROCARBONS</subject><subject>HYDROCARBURE</subject><subject>HYDROCARBURE AROMATIQUE</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Microbiology</subject><subject>MICROORGANISME THERMOPHILE</subject><subject>MICROORGANISMOS TERMOFILOS</subject><subject>MOLECULAR SEQUENCE DATA</subject><subject>NUCLEOTIDE SEQUENCE</subject><subject>Pollution</subject><subject>POLYCYCLIC HYDROCARBONS</subject><subject>SECUENCIA NUCLEOTIDICA</subject><subject>SEQUENCE NUCLEOTIDIQUE</subject><subject>Soil and sediments pollution</subject><subject>SOIL FLORA</subject><subject>SOIL FUNGI</subject><subject>Soils</subject><subject>THERMOPHILIC MICROORGANISMS</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUktvFDEMjhCobAs_AWmEEOIyS16Tx4FDW5WXijhAz5EnyeymmklKslvYf98sHbWFA-Tg2PL3-XPsINQQvCSEqrfgp6Xg1V9yonBbTQ20Vo_QgmCt2o4x8RgtMNa6pZTjp-iwlEuMMcdCHaADLbWkgi3Q55OQnF9lcLAJKTZpaCCnqQa2We9cThZyn2JpQmwgNv7XJvvJj7sGbHAV4-N1yClOPm6eoScDjMU_n-8jdPH-7Pvpx_b864dPp8fnLQjONq0SFIQavFBOCtZjSTQGJZhkTigOHLrOWSZd3_dKMykww9oSwgQdFO-4Y0fo3W3dq20_eWerdIbRXOUwQd6ZBMH8mYlhbVbp2hAsBO0q_83Mz-nH1peNmUKxfhwh-rQthqhOE8lUxyv09b-hkqp62P-BnGvNO1mBL_8CXqZtjnVehuJOcy7EXlbdgmxOpWQ_3D2OYLPfvzk--2IEr77Z739valD3X6kvHg7njjgvvOZfzXkoFsYhQ7Sh3NeXhOLfM5rbXIfV-mfI3kCZTP11D1TvtQZIBla51rn4VrvQGAsiJbsBBbLMkA</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Stapleton, R.D. (University of Tennessee, Knoxville, TN.)</creator><creator>Savage, D.C</creator><creator>Sayler, G.S</creator><creator>Stacey, G</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7TV</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19981101</creationdate><title>Biodegradation of aromatic hydrocarbons in an extremely acidic environment</title><author>Stapleton, R.D. (University of Tennessee, Knoxville, TN.) ; Savage, D.C ; Sayler, G.S ; Stacey, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a643t-862a68fe68d763b07190a86373d684a4a55dc37dbbb893760309c11362f8454d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Applied sciences</topic><topic>AROMATIC HYDROCARBONS</topic><topic>BACTERIA</topic><topic>BIODEGRADACION</topic><topic>BIODEGRADATION</topic><topic>Biodegradation of pollutants</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>CHAMPIGNON DU SOL</topic><topic>Decontamination. Miscellaneous</topic><topic>Environment</topic><topic>Environment and pollution</topic><topic>Environmental and Public Health Microbiology</topic><topic>Exact sciences and technology</topic><topic>FLORA DEL SUELO</topic><topic>FLORE DU SOL</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENBANK/AF082659</topic><topic>GENBANK/AF082660</topic><topic>HIDROCARBUROS</topic><topic>HIDROCARBUROS AROMATICOS</topic><topic>HONGOS DEL SUELO</topic><topic>HYDROCARBONS</topic><topic>HYDROCARBURE</topic><topic>HYDROCARBURE AROMATIQUE</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Microbiology</topic><topic>MICROORGANISME THERMOPHILE</topic><topic>MICROORGANISMOS TERMOFILOS</topic><topic>MOLECULAR SEQUENCE DATA</topic><topic>NUCLEOTIDE SEQUENCE</topic><topic>Pollution</topic><topic>POLYCYCLIC HYDROCARBONS</topic><topic>SECUENCIA NUCLEOTIDICA</topic><topic>SEQUENCE NUCLEOTIDIQUE</topic><topic>Soil and sediments pollution</topic><topic>SOIL FLORA</topic><topic>SOIL FUNGI</topic><topic>Soils</topic><topic>THERMOPHILIC MICROORGANISMS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stapleton, R.D. (University of Tennessee, Knoxville, TN.)</creatorcontrib><creatorcontrib>Savage, D.C</creatorcontrib><creatorcontrib>Sayler, G.S</creatorcontrib><creatorcontrib>Stacey, G</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stapleton, R.D. (University of Tennessee, Knoxville, TN.)</au><au>Savage, D.C</au><au>Sayler, G.S</au><au>Stacey, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biodegradation of aromatic hydrocarbons in an extremely acidic environment</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>64</volume><issue>11</issue><spage>4180</spage><epage>4184</epage><pages>4180-4184</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>9797263</pmid><doi>10.1128/aem.64.11.4180-4184.1998</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1998-11, Vol.64 (11), p.4180-4184
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmed_primary_9797263
source American Society for Microbiology; PubMed Central; Alma/SFX Local Collection
subjects Applied sciences
AROMATIC HYDROCARBONS
BACTERIA
BIODEGRADACION
BIODEGRADATION
Biodegradation of pollutants
Biological and medical sciences
Biotechnology
CHAMPIGNON DU SOL
Decontamination. Miscellaneous
Environment
Environment and pollution
Environmental and Public Health Microbiology
Exact sciences and technology
FLORA DEL SUELO
FLORE DU SOL
Fundamental and applied biological sciences. Psychology
GENBANK/AF082659
GENBANK/AF082660
HIDROCARBUROS
HIDROCARBUROS AROMATICOS
HONGOS DEL SUELO
HYDROCARBONS
HYDROCARBURE
HYDROCARBURE AROMATIQUE
Industrial applications and implications. Economical aspects
Microbiology
MICROORGANISME THERMOPHILE
MICROORGANISMOS TERMOFILOS
MOLECULAR SEQUENCE DATA
NUCLEOTIDE SEQUENCE
Pollution
POLYCYCLIC HYDROCARBONS
SECUENCIA NUCLEOTIDICA
SEQUENCE NUCLEOTIDIQUE
Soil and sediments pollution
SOIL FLORA
SOIL FUNGI
Soils
THERMOPHILIC MICROORGANISMS
title Biodegradation of aromatic hydrocarbons in an extremely acidic environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A48%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biodegradation%20of%20aromatic%20hydrocarbons%20in%20an%20extremely%20acidic%20environment&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Stapleton,%20R.D.%20(University%20of%20Tennessee,%20Knoxville,%20TN.)&rft.date=1998-11-01&rft.volume=64&rft.issue=11&rft.spage=4180&rft.epage=4184&rft.pages=4180-4184&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.64.11.4180-4184.1998&rft_dat=%3Cproquest_pubme%3E1859173854%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205944664&rft_id=info:pmid/9797263&rfr_iscdi=true