Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations

We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1998-09, Vol.95 (18), p.10774-10778
Hauptverfasser: Kruglyak, Semyon, Durrett, Richard T., Schug, Malcolm D., Aquadro, Charles F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10778
container_issue 18
container_start_page 10774
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 95
creator Kruglyak, Semyon
Durrett, Richard T.
Schug, Malcolm D.
Aquadro, Charles F.
description We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.
doi_str_mv 10.1073/pnas.95.18.10774
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9724780</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45967</jstor_id><sourcerecordid>45967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-70e709b326f585ffd1d0de2b0c6e7722a8f5350557d0da4b6c1d7246081763e43</originalsourceid><addsrcrecordid>eNqFkcuP0zAQxiMEWsrCHSEhLA6IS8rYieNY4gJLeUhdgXicLSeZdF2ldtZ2Frjwt-Nsq_I4wMkaz--b15dl9yksKYji2Wh1WEq-pPUci_JGtqAgaV6VEm5mCwAm8rpk5e3sTghbAJC8hpPsRApWihoW2Y_V5WQG03gz7cgrE6I3zRSNs4G4npyb1rugIw6DiUg-4og6kjXaTbxIUZiGaOyG9N7tiCYv9aBti6TB-BXRkk-DGUe9QbK6QhsD0bYjH5yxkZxPUV83uZvd6vUQ8N7hPc2-vF59Pnubr9-_eXf2Yp23vJYxF4ACZFOwquc17_uOdtAha6CtUAjGdN3zggPnIv3rsqla2qUNK6ipqAosi9Ps-b7uODU77No0j9eDGr3Zaf9dOW3UnxlrLtTGXSkmpKBJ_uQg9-5ywhDVzoQ2XUVbdFNQopBQVxX7L0grzkvBZ_DxX-DWTd6mGygGNC3K5NwW9tDsQvDYHwemoGb_1ey_klzRWl37nyQPf1_0KDgYnvJPD_lZecz-qqD6aRgifosJffRvNBEP9sQ2ROePSMllJYqfHYvP2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201326291</pqid></control><display><type>article</type><title>Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kruglyak, Semyon ; Durrett, Richard T. ; Schug, Malcolm D. ; Aquadro, Charles F.</creator><creatorcontrib>Kruglyak, Semyon ; Durrett, Richard T. ; Schug, Malcolm D. ; Aquadro, Charles F.</creatorcontrib><description>We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.18.10774</identifier><identifier>PMID: 9724780</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alleles ; Animals ; Biological Sciences ; DNA ; Evolution, Molecular ; Genetic loci ; Genetic mutation ; Genetics ; Humans ; Markov Chains ; Microsatellite Repeats ; Microsatellites ; Models, Genetic ; Mutation ; Nucleotides ; Organisms ; Point Mutation ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (18), p.10774-10778</ispartof><rights>Copyright 1993-1998 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 1, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-70e709b326f585ffd1d0de2b0c6e7722a8f5350557d0da4b6c1d7246081763e43</citedby><cites>FETCH-LOGICAL-c589t-70e709b326f585ffd1d0de2b0c6e7722a8f5350557d0da4b6c1d7246081763e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/18.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45967$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45967$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9724780$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kruglyak, Semyon</creatorcontrib><creatorcontrib>Durrett, Richard T.</creatorcontrib><creatorcontrib>Schug, Malcolm D.</creatorcontrib><creatorcontrib>Aquadro, Charles F.</creatorcontrib><title>Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.</description><subject>Alleles</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>DNA</subject><subject>Evolution, Molecular</subject><subject>Genetic loci</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Humans</subject><subject>Markov Chains</subject><subject>Microsatellite Repeats</subject><subject>Microsatellites</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Organisms</subject><subject>Point Mutation</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcuP0zAQxiMEWsrCHSEhLA6IS8rYieNY4gJLeUhdgXicLSeZdF2ldtZ2Frjwt-Nsq_I4wMkaz--b15dl9yksKYji2Wh1WEq-pPUci_JGtqAgaV6VEm5mCwAm8rpk5e3sTghbAJC8hpPsRApWihoW2Y_V5WQG03gz7cgrE6I3zRSNs4G4npyb1rugIw6DiUg-4og6kjXaTbxIUZiGaOyG9N7tiCYv9aBti6TB-BXRkk-DGUe9QbK6QhsD0bYjH5yxkZxPUV83uZvd6vUQ8N7hPc2-vF59Pnubr9-_eXf2Yp23vJYxF4ACZFOwquc17_uOdtAha6CtUAjGdN3zggPnIv3rsqla2qUNK6ipqAosi9Ps-b7uODU77No0j9eDGr3Zaf9dOW3UnxlrLtTGXSkmpKBJ_uQg9-5ywhDVzoQ2XUVbdFNQopBQVxX7L0grzkvBZ_DxX-DWTd6mGygGNC3K5NwW9tDsQvDYHwemoGb_1ey_klzRWl37nyQPf1_0KDgYnvJPD_lZecz-qqD6aRgifosJffRvNBEP9sQ2ROePSMllJYqfHYvP2w</recordid><startdate>19980901</startdate><enddate>19980901</enddate><creator>Kruglyak, Semyon</creator><creator>Durrett, Richard T.</creator><creator>Schug, Malcolm D.</creator><creator>Aquadro, Charles F.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980901</creationdate><title>Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations</title><author>Kruglyak, Semyon ; Durrett, Richard T. ; Schug, Malcolm D. ; Aquadro, Charles F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-70e709b326f585ffd1d0de2b0c6e7722a8f5350557d0da4b6c1d7246081763e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>DNA</topic><topic>Evolution, Molecular</topic><topic>Genetic loci</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Humans</topic><topic>Markov Chains</topic><topic>Microsatellite Repeats</topic><topic>Microsatellites</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Organisms</topic><topic>Point Mutation</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kruglyak, Semyon</creatorcontrib><creatorcontrib>Durrett, Richard T.</creatorcontrib><creatorcontrib>Schug, Malcolm D.</creatorcontrib><creatorcontrib>Aquadro, Charles F.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kruglyak, Semyon</au><au>Durrett, Richard T.</au><au>Schug, Malcolm D.</au><au>Aquadro, Charles F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-09-01</date><risdate>1998</risdate><volume>95</volume><issue>18</issue><spage>10774</spage><epage>10778</epage><pages>10774-10778</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We describe and test a Markov chain model of microsatellite evolution that can explain the different distributions of microsatellite lengths across different organisms and repeat motifs. Two key features of this model are the dependence of mutation rates on microsatellite length and a mutation process that includes both strand slippage and point mutation events. We compute the stationary distribution of allele lengths under this model and use it to fit DNA data for di-, tri-, and tetranucleotide repeats in humans, mice, fruit flies, and yeast. The best fit results lead to slippage rate estimates that are highest in mice, followed by humans, then yeast, and then fruit flies. Within each organism, the estimates are highest in di-, then tri-, and then tetranucleotide repeats. Our estimates are consistent with experimentally determined mutation rates from other studies. The results suggest that the different length distributions among organisms and repeat motifs can be explained by a simple difference in slippage rates and that selective constraints on length need not be imposed.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9724780</pmid><doi>10.1073/pnas.95.18.10774</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1998-09, Vol.95 (18), p.10774-10778
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_9724780
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animals
Biological Sciences
DNA
Evolution, Molecular
Genetic loci
Genetic mutation
Genetics
Humans
Markov Chains
Microsatellite Repeats
Microsatellites
Models, Genetic
Mutation
Nucleotides
Organisms
Point Mutation
Yeasts
title Equilibrium Distributions of Microsatellite Repeat Length Resulting from a Balance between Slippage Events and Point Mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A14%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equilibrium%20Distributions%20of%20Microsatellite%20Repeat%20Length%20Resulting%20from%20a%20Balance%20between%20Slippage%20Events%20and%20Point%20Mutations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kruglyak,%20Semyon&rft.date=1998-09-01&rft.volume=95&rft.issue=18&rft.spage=10774&rft.epage=10778&rft.pages=10774-10778&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.18.10774&rft_dat=%3Cjstor_pubme%3E45967%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201326291&rft_id=info:pmid/9724780&rft_jstor_id=45967&rfr_iscdi=true