Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics
Mutagenesis of the large subunit (LS) of the potato ADP-glucose pyrophosphorylase generated an enzyme, P52L, that was insensitive to 3-phosphoglycerate (3-PGA). To identify additional residues involved in 3-PGA interaction, we subjected P52L LS DNA to a second round of mutagenesis and identified sec...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1998-08, Vol.95 (17), p.10322-10327 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10327 |
---|---|
container_issue | 17 |
container_start_page | 10322 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 95 |
creator | Greene, T.W. (Washington State University, Pullman, WA.) Kavakli, I.H Kahn, M.L Okita, T.W |
description | Mutagenesis of the large subunit (LS) of the potato ADP-glucose pyrophosphorylase generated an enzyme, P52L, that was insensitive to 3-phosphoglycerate (3-PGA). To identify additional residues involved in 3-PGA interaction, we subjected P52L LS DNA to a second round of mutagenesis and identified second-site revertants by their ability to restore glycogen accumulation as assessed by iodine (I2) staining. Enzymes from class I revertants with normal I2-staining had an 11- to 49-fo1d greater affinity for the activator 3-PGA compared with the P52L mutant and a decreased sensitivity to the inhibitor orthophosphate. Sequence analysis of these class I revertants identified a P66L mutation in R4, an E38K mutation in R20, and a G101N mutation in R10 and R32. These mutations appear to restore 3-PGA binding by counteracting the effect of the P52L mutation because introducing E38K or G101N into the wild-type LS led to enzyme variants with higher affinity for the activator 3-PGA and increased resistance to the inhibitor orthophosphate. The generation of these revertant enzymes provides additional structure-function information on the allosteric regulation of higher plant ADP-glucose pyrophosphorylases and validates a strategy for developing novel variants of the enzyme that may be useful in manipulating starch biosynthesis in higher plants |
doi_str_mv | 10.1073/pnas.95.17.10322 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9707646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>45652</jstor_id><sourcerecordid>45652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c611t-35be21b7650ef0a264a0b9411260604eb8306259026a7f9321a1f8a7dfc6478d3</originalsourceid><addsrcrecordid>eNp9ks-L1DAUx4Mo6zp6F0EsHsRLx5c0Pxrwsqy6CgsKuufw2klnO2SabpIOzn9v6gzj6sFDCMn38315yTeEPKewpKCqd-OAcanFkqq8rhh7QM4paFpKruEhOQdgqqw544_Jkxg3AKBFDWfkTCtQkstz4q7sYAOm3g-F74ppLINdTw6TXRXonI_Jhr4tdhh6HFKcmdEnTL64-PCtXLup9dEW4z748dbHPMLeYd5p9kWwOxviXHidz0h9G5-SRx26aJ8d5wW5-fTxx-Xn8vrr1ZfLi-uylZSmshKNZbRRUoDtAJnkCI3mlDIJErht6gokExqYRNXpilGkXY1q1bWSq3pVLcj7Q91xarZ21dohBXRmDP0Ww9547M3fytDfmrXfGUZFftUFeXO0B3832ZjMto-tdQ4H66doqOQ1q6sZfP0PuPFTGPLVDANaCSU0zxAcoDb4GIPtTn1QMHOIZg7RaGGoMr9DzJaX9_s_GY6pZf3tUZ-dJ_VPBdNNziX7M2X01f_RTLw4EJuYfDghXEhxr5MOvcF16KO5-U611vlnUV1XvwBAWMSh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201357594</pqid></control><display><type>article</type><title>Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Greene, T.W. (Washington State University, Pullman, WA.) ; Kavakli, I.H ; Kahn, M.L ; Okita, T.W</creator><creatorcontrib>Greene, T.W. (Washington State University, Pullman, WA.) ; Kavakli, I.H ; Kahn, M.L ; Okita, T.W</creatorcontrib><description>Mutagenesis of the large subunit (LS) of the potato ADP-glucose pyrophosphorylase generated an enzyme, P52L, that was insensitive to 3-phosphoglycerate (3-PGA). To identify additional residues involved in 3-PGA interaction, we subjected P52L LS DNA to a second round of mutagenesis and identified second-site revertants by their ability to restore glycogen accumulation as assessed by iodine (I2) staining. Enzymes from class I revertants with normal I2-staining had an 11- to 49-fo1d greater affinity for the activator 3-PGA compared with the P52L mutant and a decreased sensitivity to the inhibitor orthophosphate. Sequence analysis of these class I revertants identified a P66L mutation in R4, an E38K mutation in R20, and a G101N mutation in R10 and R32. These mutations appear to restore 3-PGA binding by counteracting the effect of the P52L mutation because introducing E38K or G101N into the wild-type LS led to enzyme variants with higher affinity for the activator 3-PGA and increased resistance to the inhibitor orthophosphate. The generation of these revertant enzymes provides additional structure-function information on the allosteric regulation of higher plant ADP-glucose pyrophosphorylases and validates a strategy for developing novel variants of the enzyme that may be useful in manipulating starch biosynthesis in higher plants</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.17.10322</identifier><identifier>PMID: 9707646</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; Allosteric regulation ; Allosteric Site - genetics ; Amino Acid Sequence ; Base Sequence ; BINDING ; Biological Sciences ; CARBOHYDRATE METABOLISM ; DNA Primers - genetics ; Enzyme Activation - drug effects ; Enzyme Activation - genetics ; ENZYME INHIBITORS ; Enzyme Stability - genetics ; Enzymes ; ENZYMIC ACTIVITY ; FOSFATOS (ESTERES) ; FOSFORO ; GENE ; GENES ; Genes, Plant ; Genetic mutation ; Genetic Variation ; Genetics ; GLICOGENO ; Glucose-1-Phosphate Adenylyltransferase ; GLYCERATE 3-PHOSPHATE ; Glyceric Acids - metabolism ; Glyceric Acids - pharmacology ; GLYCOGEN ; GLYCOGENE ; Hot Temperature ; INDUCED MUTATION ; INHIBIDORES DE ENZIMAS ; INHIBITEUR D'ENZYME ; KINASES ; Kinetics ; METABOLISME DES GLUCIDES ; METABOLISMO DE CARBOHIDRATOS ; Molecular Sequence Data ; MUTACION ; MUTACION INDUCIDA ; Mutagenesis ; Mutagenesis, Site-Directed ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION ; MUTATION PROVOQUEE ; Nucleotidyltransferases - chemistry ; Nucleotidyltransferases - genetics ; Nucleotidyltransferases - metabolism ; ORTHOPHOSPHATE ; PHOSPHATE (ESTER) ; Phosphates ; PHOSPHATES (ESTERS) ; PHOSPHORE ; PHOSPHORUS ; Plants ; Plasmids ; Potatoes ; RESISTANCE ; Sequence Homology, Amino Acid ; SOLANUM TUBEROSUM ; Solanum tuberosum - enzymology ; Solanum tuberosum - genetics ; Starch - biosynthesis ; Starches ; TARGETED MUTAGENESIS ; TRANSFERASAS ; TRANSFERASE ; TRANSFERASES ; Up-Regulation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-08, Vol.95 (17), p.10322-10327</ispartof><rights>Copyright 1993-1998 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Aug 18, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c611t-35be21b7650ef0a264a0b9411260604eb8306259026a7f9321a1f8a7dfc6478d3</citedby><cites>FETCH-LOGICAL-c611t-35be21b7650ef0a264a0b9411260604eb8306259026a7f9321a1f8a7dfc6478d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/17.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/45652$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/45652$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9707646$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Greene, T.W. (Washington State University, Pullman, WA.)</creatorcontrib><creatorcontrib>Kavakli, I.H</creatorcontrib><creatorcontrib>Kahn, M.L</creatorcontrib><creatorcontrib>Okita, T.W</creatorcontrib><title>Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutagenesis of the large subunit (LS) of the potato ADP-glucose pyrophosphorylase generated an enzyme, P52L, that was insensitive to 3-phosphoglycerate (3-PGA). To identify additional residues involved in 3-PGA interaction, we subjected P52L LS DNA to a second round of mutagenesis and identified second-site revertants by their ability to restore glycogen accumulation as assessed by iodine (I2) staining. Enzymes from class I revertants with normal I2-staining had an 11- to 49-fo1d greater affinity for the activator 3-PGA compared with the P52L mutant and a decreased sensitivity to the inhibitor orthophosphate. Sequence analysis of these class I revertants identified a P66L mutation in R4, an E38K mutation in R20, and a G101N mutation in R10 and R32. These mutations appear to restore 3-PGA binding by counteracting the effect of the P52L mutation because introducing E38K or G101N into the wild-type LS led to enzyme variants with higher affinity for the activator 3-PGA and increased resistance to the inhibitor orthophosphate. The generation of these revertant enzymes provides additional structure-function information on the allosteric regulation of higher plant ADP-glucose pyrophosphorylases and validates a strategy for developing novel variants of the enzyme that may be useful in manipulating starch biosynthesis in higher plants</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>Allosteric regulation</subject><subject>Allosteric Site - genetics</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>BINDING</subject><subject>Biological Sciences</subject><subject>CARBOHYDRATE METABOLISM</subject><subject>DNA Primers - genetics</subject><subject>Enzyme Activation - drug effects</subject><subject>Enzyme Activation - genetics</subject><subject>ENZYME INHIBITORS</subject><subject>Enzyme Stability - genetics</subject><subject>Enzymes</subject><subject>ENZYMIC ACTIVITY</subject><subject>FOSFATOS (ESTERES)</subject><subject>FOSFORO</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Plant</subject><subject>Genetic mutation</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>GLICOGENO</subject><subject>Glucose-1-Phosphate Adenylyltransferase</subject><subject>GLYCERATE 3-PHOSPHATE</subject><subject>Glyceric Acids - metabolism</subject><subject>Glyceric Acids - pharmacology</subject><subject>GLYCOGEN</subject><subject>GLYCOGENE</subject><subject>Hot Temperature</subject><subject>INDUCED MUTATION</subject><subject>INHIBIDORES DE ENZIMAS</subject><subject>INHIBITEUR D'ENZYME</subject><subject>KINASES</subject><subject>Kinetics</subject><subject>METABOLISME DES GLUCIDES</subject><subject>METABOLISMO DE CARBOHIDRATOS</subject><subject>Molecular Sequence Data</subject><subject>MUTACION</subject><subject>MUTACION INDUCIDA</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION</subject><subject>MUTATION PROVOQUEE</subject><subject>Nucleotidyltransferases - chemistry</subject><subject>Nucleotidyltransferases - genetics</subject><subject>Nucleotidyltransferases - metabolism</subject><subject>ORTHOPHOSPHATE</subject><subject>PHOSPHATE (ESTER)</subject><subject>Phosphates</subject><subject>PHOSPHATES (ESTERS)</subject><subject>PHOSPHORE</subject><subject>PHOSPHORUS</subject><subject>Plants</subject><subject>Plasmids</subject><subject>Potatoes</subject><subject>RESISTANCE</subject><subject>Sequence Homology, Amino Acid</subject><subject>SOLANUM TUBEROSUM</subject><subject>Solanum tuberosum - enzymology</subject><subject>Solanum tuberosum - genetics</subject><subject>Starch - biosynthesis</subject><subject>Starches</subject><subject>TARGETED MUTAGENESIS</subject><subject>TRANSFERASAS</subject><subject>TRANSFERASE</subject><subject>TRANSFERASES</subject><subject>Up-Regulation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks-L1DAUx4Mo6zp6F0EsHsRLx5c0Pxrwsqy6CgsKuufw2klnO2SabpIOzn9v6gzj6sFDCMn38315yTeEPKewpKCqd-OAcanFkqq8rhh7QM4paFpKruEhOQdgqqw544_Jkxg3AKBFDWfkTCtQkstz4q7sYAOm3g-F74ppLINdTw6TXRXonI_Jhr4tdhh6HFKcmdEnTL64-PCtXLup9dEW4z748dbHPMLeYd5p9kWwOxviXHidz0h9G5-SRx26aJ8d5wW5-fTxx-Xn8vrr1ZfLi-uylZSmshKNZbRRUoDtAJnkCI3mlDIJErht6gokExqYRNXpilGkXY1q1bWSq3pVLcj7Q91xarZ21dohBXRmDP0Ww9547M3fytDfmrXfGUZFftUFeXO0B3832ZjMto-tdQ4H66doqOQ1q6sZfP0PuPFTGPLVDANaCSU0zxAcoDb4GIPtTn1QMHOIZg7RaGGoMr9DzJaX9_s_GY6pZf3tUZ-dJ_VPBdNNziX7M2X01f_RTLw4EJuYfDghXEhxr5MOvcF16KO5-U611vlnUV1XvwBAWMSh</recordid><startdate>19980818</startdate><enddate>19980818</enddate><creator>Greene, T.W. (Washington State University, Pullman, WA.)</creator><creator>Kavakli, I.H</creator><creator>Kahn, M.L</creator><creator>Okita, T.W</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19980818</creationdate><title>Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics</title><author>Greene, T.W. (Washington State University, Pullman, WA.) ; Kavakli, I.H ; Kahn, M.L ; Okita, T.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c611t-35be21b7650ef0a264a0b9411260604eb8306259026a7f9321a1f8a7dfc6478d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>Allosteric regulation</topic><topic>Allosteric Site - genetics</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>BINDING</topic><topic>Biological Sciences</topic><topic>CARBOHYDRATE METABOLISM</topic><topic>DNA Primers - genetics</topic><topic>Enzyme Activation - drug effects</topic><topic>Enzyme Activation - genetics</topic><topic>ENZYME INHIBITORS</topic><topic>Enzyme Stability - genetics</topic><topic>Enzymes</topic><topic>ENZYMIC ACTIVITY</topic><topic>FOSFATOS (ESTERES)</topic><topic>FOSFORO</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Plant</topic><topic>Genetic mutation</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>GLICOGENO</topic><topic>Glucose-1-Phosphate Adenylyltransferase</topic><topic>GLYCERATE 3-PHOSPHATE</topic><topic>Glyceric Acids - metabolism</topic><topic>Glyceric Acids - pharmacology</topic><topic>GLYCOGEN</topic><topic>GLYCOGENE</topic><topic>Hot Temperature</topic><topic>INDUCED MUTATION</topic><topic>INHIBIDORES DE ENZIMAS</topic><topic>INHIBITEUR D'ENZYME</topic><topic>KINASES</topic><topic>Kinetics</topic><topic>METABOLISME DES GLUCIDES</topic><topic>METABOLISMO DE CARBOHIDRATOS</topic><topic>Molecular Sequence Data</topic><topic>MUTACION</topic><topic>MUTACION INDUCIDA</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION</topic><topic>MUTATION PROVOQUEE</topic><topic>Nucleotidyltransferases - chemistry</topic><topic>Nucleotidyltransferases - genetics</topic><topic>Nucleotidyltransferases - metabolism</topic><topic>ORTHOPHOSPHATE</topic><topic>PHOSPHATE (ESTER)</topic><topic>Phosphates</topic><topic>PHOSPHATES (ESTERS)</topic><topic>PHOSPHORE</topic><topic>PHOSPHORUS</topic><topic>Plants</topic><topic>Plasmids</topic><topic>Potatoes</topic><topic>RESISTANCE</topic><topic>Sequence Homology, Amino Acid</topic><topic>SOLANUM TUBEROSUM</topic><topic>Solanum tuberosum - enzymology</topic><topic>Solanum tuberosum - genetics</topic><topic>Starch - biosynthesis</topic><topic>Starches</topic><topic>TARGETED MUTAGENESIS</topic><topic>TRANSFERASAS</topic><topic>TRANSFERASE</topic><topic>TRANSFERASES</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Greene, T.W. (Washington State University, Pullman, WA.)</creatorcontrib><creatorcontrib>Kavakli, I.H</creatorcontrib><creatorcontrib>Kahn, M.L</creatorcontrib><creatorcontrib>Okita, T.W</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Greene, T.W. (Washington State University, Pullman, WA.)</au><au>Kavakli, I.H</au><au>Kahn, M.L</au><au>Okita, T.W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-08-18</date><risdate>1998</risdate><volume>95</volume><issue>17</issue><spage>10322</spage><epage>10327</epage><pages>10322-10327</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutagenesis of the large subunit (LS) of the potato ADP-glucose pyrophosphorylase generated an enzyme, P52L, that was insensitive to 3-phosphoglycerate (3-PGA). To identify additional residues involved in 3-PGA interaction, we subjected P52L LS DNA to a second round of mutagenesis and identified second-site revertants by their ability to restore glycogen accumulation as assessed by iodine (I2) staining. Enzymes from class I revertants with normal I2-staining had an 11- to 49-fo1d greater affinity for the activator 3-PGA compared with the P52L mutant and a decreased sensitivity to the inhibitor orthophosphate. Sequence analysis of these class I revertants identified a P66L mutation in R4, an E38K mutation in R20, and a G101N mutation in R10 and R32. These mutations appear to restore 3-PGA binding by counteracting the effect of the P52L mutation because introducing E38K or G101N into the wild-type LS led to enzyme variants with higher affinity for the activator 3-PGA and increased resistance to the inhibitor orthophosphate. The generation of these revertant enzymes provides additional structure-function information on the allosteric regulation of higher plant ADP-glucose pyrophosphorylases and validates a strategy for developing novel variants of the enzyme that may be useful in manipulating starch biosynthesis in higher plants</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9707646</pmid><doi>10.1073/pnas.95.17.10322</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1998-08, Vol.95 (17), p.10322-10327 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_9707646 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE Allosteric regulation Allosteric Site - genetics Amino Acid Sequence Base Sequence BINDING Biological Sciences CARBOHYDRATE METABOLISM DNA Primers - genetics Enzyme Activation - drug effects Enzyme Activation - genetics ENZYME INHIBITORS Enzyme Stability - genetics Enzymes ENZYMIC ACTIVITY FOSFATOS (ESTERES) FOSFORO GENE GENES Genes, Plant Genetic mutation Genetic Variation Genetics GLICOGENO Glucose-1-Phosphate Adenylyltransferase GLYCERATE 3-PHOSPHATE Glyceric Acids - metabolism Glyceric Acids - pharmacology GLYCOGEN GLYCOGENE Hot Temperature INDUCED MUTATION INHIBIDORES DE ENZIMAS INHIBITEUR D'ENZYME KINASES Kinetics METABOLISME DES GLUCIDES METABOLISMO DE CARBOHIDRATOS Molecular Sequence Data MUTACION MUTACION INDUCIDA Mutagenesis Mutagenesis, Site-Directed MUTANT MUTANTES MUTANTS MUTATION MUTATION PROVOQUEE Nucleotidyltransferases - chemistry Nucleotidyltransferases - genetics Nucleotidyltransferases - metabolism ORTHOPHOSPHATE PHOSPHATE (ESTER) Phosphates PHOSPHATES (ESTERS) PHOSPHORE PHOSPHORUS Plants Plasmids Potatoes RESISTANCE Sequence Homology, Amino Acid SOLANUM TUBEROSUM Solanum tuberosum - enzymology Solanum tuberosum - genetics Starch - biosynthesis Starches TARGETED MUTAGENESIS TRANSFERASAS TRANSFERASE TRANSFERASES Up-Regulation |
title | Generation of up-regulated allosteric variants of potato ADP-glucose pyrophosphorylase by reversion genetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A05%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generation%20of%20up-regulated%20allosteric%20variants%20of%20potato%20ADP-glucose%20pyrophosphorylase%20by%20reversion%20genetics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Greene,%20T.W.%20(Washington%20State%20University,%20Pullman,%20WA.)&rft.date=1998-08-18&rft.volume=95&rft.issue=17&rft.spage=10322&rft.epage=10327&rft.pages=10322-10327&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.17.10322&rft_dat=%3Cjstor_pubme%3E45652%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201357594&rft_id=info:pmid/9707646&rft_jstor_id=45652&rfr_iscdi=true |