Characterization of the ATF/CREB Site and Its Complex with GCN4

We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1998-02, Vol.95 (4), p.1410-1415
Hauptverfasser: Hockings, Susan C., Kahn, Jason D., Crothers, Donald M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1415
container_issue 4
container_start_page 1410
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 95
creator Hockings, Susan C.
Kahn, Jason D.
Crothers, Donald M.
description We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-tract multimer bend by a variable length phasing adaptor. The cyclization results show that GCN4 binding does not significantly change the conformation of the ATF/CREB site, which is intrinsically slightly bent toward the major groove. Monte Carlo simulations quantative the ATF/CREB site structure as an 8 degrees bend toward the major groove in a coordinate frame near the center of the site. The ATF/CREB site is underwound by 53 degrees relative to the related AP-1 site DNA. The effect of GCN4 binding can be modeled either as a decrease in the local flexibility, corresponding to an estimated 60% increase in the persistence length for the 10-bp binding site, or possibly as a small decrease (1 degrees) in intrinsic bend angle. Our results agree with recent electrophoretic and crystallographic studies and demonstrate that cyclization and simulation can characterize subtle changes in DNA structure and flexibility.
doi_str_mv 10.1073/pnas.95.4.1410
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9465028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44296</jstor_id><sourcerecordid>44296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-ed7945f5009245fa4884622561a9e3be17072b43424dd2f1086ef2a782003afa3</originalsourceid><addsrcrecordid>eNqFkcFLHDEUxoNUdGu99iAIwYO3GV8ySSYBQeygVpAWWnsO2ZlMd5bZyZpkWtu_vll2WVYP9vQO3-97fO99CH0kkBMoi4vlYEKueM5ywgjsoQkBRTLBFLxDEwBaZpJRdojehzAHAMUlHKADxQQHKifoqpoZb-pofffXxM4N2LU4ziy-fry9qL7dfMLfu2ixGRp8HwOu3GLZ22f8u4szfFd9YR_Qfmv6YI838wj9uL15rD5nD1_v7qvrh6zmpIiZbUrFeMtTAJqmYVIyQSkXxChbTC0poaRTVqSoTUNbAlLYlppSUoDCtKY4QpfrvctxurBNbYfoTa-XvlsY_0c70-mXytDN9E_3SxMFlCX7-cbu3dNoQ9SLLtS2781g3Rh0qYSUioj_ggmBUgpI4NkrcO5GP6QfaAqkSP_nNEH5Gqq9C8HbdhuYgF7Vp1f1acU106v6kuF098wtvulrR1_5tuqO__wtXbdj30f7HBN4sgbnITq_JRmjShT_ABfVs4o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201349052</pqid></control><display><type>article</type><title>Characterization of the ATF/CREB Site and Its Complex with GCN4</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hockings, Susan C. ; Kahn, Jason D. ; Crothers, Donald M.</creator><creatorcontrib>Hockings, Susan C. ; Kahn, Jason D. ; Crothers, Donald M.</creatorcontrib><description>We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-tract multimer bend by a variable length phasing adaptor. The cyclization results show that GCN4 binding does not significantly change the conformation of the ATF/CREB site, which is intrinsically slightly bent toward the major groove. Monte Carlo simulations quantative the ATF/CREB site structure as an 8 degrees bend toward the major groove in a coordinate frame near the center of the site. The ATF/CREB site is underwound by 53 degrees relative to the related AP-1 site DNA. The effect of GCN4 binding can be modeled either as a decrease in the local flexibility, corresponding to an estimated 60% increase in the persistence length for the 10-bp binding site, or possibly as a small decrease (1 degrees) in intrinsic bend angle. Our results agree with recent electrophoretic and crystallographic studies and demonstrate that cyclization and simulation can characterize subtle changes in DNA structure and flexibility.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.4.1410</identifier><identifier>PMID: 9465028</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Bending ; Binding Sites ; Biochemistry ; Biological Sciences ; Cell-Free System ; Cyclic AMP Response Element-Binding Protein - chemistry ; Deoxyribonucleic acid ; Deoxyribonucleoproteins - chemistry ; DNA ; DNA, Circular - chemistry ; DNA-Binding Proteins - chemistry ; Electrophoresis, Agar Gel ; Fungal Proteins - chemistry ; Gels ; Kinetics ; Molecules ; Monte Carlo Method ; Monte Carlo methods ; Motion ; Nucleic Acid Conformation ; Polymerase chain reaction ; Protein Kinases - chemistry ; Proteins ; Saccharomyces cerevisiae Proteins</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-02, Vol.95 (4), p.1410-1415</ispartof><rights>Copyright 1993-1998 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Feb 17, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-ed7945f5009245fa4884622561a9e3be17072b43424dd2f1086ef2a782003afa3</citedby><cites>FETCH-LOGICAL-c513t-ed7945f5009245fa4884622561a9e3be17072b43424dd2f1086ef2a782003afa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/4.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44296$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44296$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9465028$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hockings, Susan C.</creatorcontrib><creatorcontrib>Kahn, Jason D.</creatorcontrib><creatorcontrib>Crothers, Donald M.</creatorcontrib><title>Characterization of the ATF/CREB Site and Its Complex with GCN4</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-tract multimer bend by a variable length phasing adaptor. The cyclization results show that GCN4 binding does not significantly change the conformation of the ATF/CREB site, which is intrinsically slightly bent toward the major groove. Monte Carlo simulations quantative the ATF/CREB site structure as an 8 degrees bend toward the major groove in a coordinate frame near the center of the site. The ATF/CREB site is underwound by 53 degrees relative to the related AP-1 site DNA. The effect of GCN4 binding can be modeled either as a decrease in the local flexibility, corresponding to an estimated 60% increase in the persistence length for the 10-bp binding site, or possibly as a small decrease (1 degrees) in intrinsic bend angle. Our results agree with recent electrophoretic and crystallographic studies and demonstrate that cyclization and simulation can characterize subtle changes in DNA structure and flexibility.</description><subject>Bending</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Cell-Free System</subject><subject>Cyclic AMP Response Element-Binding Protein - chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>Deoxyribonucleoproteins - chemistry</subject><subject>DNA</subject><subject>DNA, Circular - chemistry</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>Electrophoresis, Agar Gel</subject><subject>Fungal Proteins - chemistry</subject><subject>Gels</subject><subject>Kinetics</subject><subject>Molecules</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo methods</subject><subject>Motion</subject><subject>Nucleic Acid Conformation</subject><subject>Polymerase chain reaction</subject><subject>Protein Kinases - chemistry</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae Proteins</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFLHDEUxoNUdGu99iAIwYO3GV8ySSYBQeygVpAWWnsO2ZlMd5bZyZpkWtu_vll2WVYP9vQO3-97fO99CH0kkBMoi4vlYEKueM5ywgjsoQkBRTLBFLxDEwBaZpJRdojehzAHAMUlHKADxQQHKifoqpoZb-pofffXxM4N2LU4ziy-fry9qL7dfMLfu2ixGRp8HwOu3GLZ22f8u4szfFd9YR_Qfmv6YI838wj9uL15rD5nD1_v7qvrh6zmpIiZbUrFeMtTAJqmYVIyQSkXxChbTC0poaRTVqSoTUNbAlLYlppSUoDCtKY4QpfrvctxurBNbYfoTa-XvlsY_0c70-mXytDN9E_3SxMFlCX7-cbu3dNoQ9SLLtS2781g3Rh0qYSUioj_ggmBUgpI4NkrcO5GP6QfaAqkSP_nNEH5Gqq9C8HbdhuYgF7Vp1f1acU106v6kuF098wtvulrR1_5tuqO__wtXbdj30f7HBN4sgbnITq_JRmjShT_ABfVs4o</recordid><startdate>19980217</startdate><enddate>19980217</enddate><creator>Hockings, Susan C.</creator><creator>Kahn, Jason D.</creator><creator>Crothers, Donald M.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980217</creationdate><title>Characterization of the ATF/CREB Site and Its Complex with GCN4</title><author>Hockings, Susan C. ; Kahn, Jason D. ; Crothers, Donald M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-ed7945f5009245fa4884622561a9e3be17072b43424dd2f1086ef2a782003afa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Bending</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Cell-Free System</topic><topic>Cyclic AMP Response Element-Binding Protein - chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>Deoxyribonucleoproteins - chemistry</topic><topic>DNA</topic><topic>DNA, Circular - chemistry</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>Electrophoresis, Agar Gel</topic><topic>Fungal Proteins - chemistry</topic><topic>Gels</topic><topic>Kinetics</topic><topic>Molecules</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo methods</topic><topic>Motion</topic><topic>Nucleic Acid Conformation</topic><topic>Polymerase chain reaction</topic><topic>Protein Kinases - chemistry</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hockings, Susan C.</creatorcontrib><creatorcontrib>Kahn, Jason D.</creatorcontrib><creatorcontrib>Crothers, Donald M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hockings, Susan C.</au><au>Kahn, Jason D.</au><au>Crothers, Donald M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of the ATF/CREB Site and Its Complex with GCN4</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-02-17</date><risdate>1998</risdate><volume>95</volume><issue>4</issue><spage>1410</spage><epage>1415</epage><pages>1410-1415</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have studied DNA minicircles containing the ATF/CREB binding site for GCN4 by using a combination of cyclization kinetics experiments and Monte Carlo simulations. Cyclization rates were determined with and without GCN4 for DNA constructs containing the ATF/CREB site separated from a phased A-tract multimer bend by a variable length phasing adaptor. The cyclization results show that GCN4 binding does not significantly change the conformation of the ATF/CREB site, which is intrinsically slightly bent toward the major groove. Monte Carlo simulations quantative the ATF/CREB site structure as an 8 degrees bend toward the major groove in a coordinate frame near the center of the site. The ATF/CREB site is underwound by 53 degrees relative to the related AP-1 site DNA. The effect of GCN4 binding can be modeled either as a decrease in the local flexibility, corresponding to an estimated 60% increase in the persistence length for the 10-bp binding site, or possibly as a small decrease (1 degrees) in intrinsic bend angle. Our results agree with recent electrophoretic and crystallographic studies and demonstrate that cyclization and simulation can characterize subtle changes in DNA structure and flexibility.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9465028</pmid><doi>10.1073/pnas.95.4.1410</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1998-02, Vol.95 (4), p.1410-1415
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_9465028
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bending
Binding Sites
Biochemistry
Biological Sciences
Cell-Free System
Cyclic AMP Response Element-Binding Protein - chemistry
Deoxyribonucleic acid
Deoxyribonucleoproteins - chemistry
DNA
DNA, Circular - chemistry
DNA-Binding Proteins - chemistry
Electrophoresis, Agar Gel
Fungal Proteins - chemistry
Gels
Kinetics
Molecules
Monte Carlo Method
Monte Carlo methods
Motion
Nucleic Acid Conformation
Polymerase chain reaction
Protein Kinases - chemistry
Proteins
Saccharomyces cerevisiae Proteins
title Characterization of the ATF/CREB Site and Its Complex with GCN4
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20the%20ATF/CREB%20Site%20and%20Its%20Complex%20with%20GCN4&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hockings,%20Susan%20C.&rft.date=1998-02-17&rft.volume=95&rft.issue=4&rft.spage=1410&rft.epage=1415&rft.pages=1410-1415&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.4.1410&rft_dat=%3Cjstor_pubme%3E44296%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201349052&rft_id=info:pmid/9465028&rft_jstor_id=44296&rfr_iscdi=true