Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats
Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA result...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1997-11, Vol.94 (23), p.12343-12347 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12347 |
---|---|
container_issue | 23 |
container_start_page | 12343 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 94 |
creator | Hedjran, Farah Yeakley, Joanne M. Huh, Gene S. Hynes, Richard O. Rosenfeld, Michael G. |
description | Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements. |
doi_str_mv | 10.1073/pnas.94.23.12343 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9356451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43909</jstor_id><sourcerecordid>43909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoYzu6F0EsXIibam8ela6Am6ZnfDHoMOo6pKpujWlSlTJJDc6_N2037WPhKoTzncPhHkIeU1hSWPFX02jiUokl40vKuOB3yIKCoqUUCu6SBQBblbVg4j55EOMWAFRVwwk5UbySoqIL8mHjxxS8K3xfrF3CMJpkb7C4DFgOVx_XxefJ2daO10VzW5zZmIJt5oRdcYljMgMG2xZXOKFJ8SG51xsX8dHhPSVf35x_2bwrLz69fb9ZX5RtVatU1saslFJV1UnJqZEtYz2DBqVoa0YbbGpm-to0sus7kbsD5i92XV9lvakEPyWv97nT3AzYtblIME5PwQ4m3GpvrP5bGe03fe1vNBOKy2x_cbAH_33GmPRgY4vOmRH9HDWVPF-2hgw-_wfc-jnfx0XNgDJF5WqXBnuoDT7GgP2xBwW9m0jvJtJKaMb1r4my5emf_Y-GwyZZf3nQd86j-jtB97PLU_1IGX32fzQTT_bENiYfjojgChT_Cdckr3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201291676</pqid></control><display><type>article</type><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</creator><creatorcontrib>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</creatorcontrib><description>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.23.12343</identifier><identifier>PMID: 9356451</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alternative Splicing ; Animals ; Biochemistry ; Biological Sciences ; Calcitonin - biosynthesis ; Calcitonin - genetics ; Cell lines ; Cells ; Exons ; Gene expression regulation ; Genes ; Genetic mutation ; HeLa Cells ; Humans ; Introns ; Mutation ; Nucleotides ; Rats ; Repetitive Sequences, Nucleic Acid - genetics ; Ribonucleic acid ; RNA ; RNA Precursors - genetics ; Rodents ; Splicing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-11, Vol.94 (23), p.12343-12347</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Nov 11, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</citedby><cites>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43909$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43909$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9356451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedjran, Farah</creatorcontrib><creatorcontrib>Yeakley, Joanne M.</creatorcontrib><creatorcontrib>Huh, Gene S.</creatorcontrib><creatorcontrib>Hynes, Richard O.</creatorcontrib><creatorcontrib>Rosenfeld, Michael G.</creatorcontrib><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</description><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Calcitonin - biosynthesis</subject><subject>Calcitonin - genetics</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Exons</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Introns</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Rats</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Precursors - genetics</subject><subject>Rodents</subject><subject>Splicing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoYzu6F0EsXIibam8ela6Am6ZnfDHoMOo6pKpujWlSlTJJDc6_N2037WPhKoTzncPhHkIeU1hSWPFX02jiUokl40vKuOB3yIKCoqUUCu6SBQBblbVg4j55EOMWAFRVwwk5UbySoqIL8mHjxxS8K3xfrF3CMJpkb7C4DFgOVx_XxefJ2daO10VzW5zZmIJt5oRdcYljMgMG2xZXOKFJ8SG51xsX8dHhPSVf35x_2bwrLz69fb9ZX5RtVatU1saslFJV1UnJqZEtYz2DBqVoa0YbbGpm-to0sus7kbsD5i92XV9lvakEPyWv97nT3AzYtblIME5PwQ4m3GpvrP5bGe03fe1vNBOKy2x_cbAH_33GmPRgY4vOmRH9HDWVPF-2hgw-_wfc-jnfx0XNgDJF5WqXBnuoDT7GgP2xBwW9m0jvJtJKaMb1r4my5emf_Y-GwyZZf3nQd86j-jtB97PLU_1IGX32fzQTT_bENiYfjojgChT_Cdckr3g</recordid><startdate>19971111</startdate><enddate>19971111</enddate><creator>Hedjran, Farah</creator><creator>Yeakley, Joanne M.</creator><creator>Huh, Gene S.</creator><creator>Hynes, Richard O.</creator><creator>Rosenfeld, Michael G.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19971111</creationdate><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><author>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Calcitonin - biosynthesis</topic><topic>Calcitonin - genetics</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Exons</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Introns</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Rats</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Precursors - genetics</topic><topic>Rodents</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedjran, Farah</creatorcontrib><creatorcontrib>Yeakley, Joanne M.</creatorcontrib><creatorcontrib>Huh, Gene S.</creatorcontrib><creatorcontrib>Hynes, Richard O.</creatorcontrib><creatorcontrib>Rosenfeld, Michael G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedjran, Farah</au><au>Yeakley, Joanne M.</au><au>Huh, Gene S.</au><au>Hynes, Richard O.</au><au>Rosenfeld, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-11-11</date><risdate>1997</risdate><volume>94</volume><issue>23</issue><spage>12343</spage><epage>12347</epage><pages>12343-12347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9356451</pmid><doi>10.1073/pnas.94.23.12343</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1997-11, Vol.94 (23), p.12343-12347 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_9356451 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alternative Splicing Animals Biochemistry Biological Sciences Calcitonin - biosynthesis Calcitonin - genetics Cell lines Cells Exons Gene expression regulation Genes Genetic mutation HeLa Cells Humans Introns Mutation Nucleotides Rats Repetitive Sequences, Nucleic Acid - genetics Ribonucleic acid RNA RNA Precursors - genetics Rodents Splicing |
title | Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Alternative%20Pre-mRNA%20Splicing%20by%20Distributed%20Pentameric%20Repeats&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hedjran,%20Farah&rft.date=1997-11-11&rft.volume=94&rft.issue=23&rft.spage=12343&rft.epage=12347&rft.pages=12343-12347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.23.12343&rft_dat=%3Cjstor_pubme%3E43909%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201291676&rft_id=info:pmid/9356451&rft_jstor_id=43909&rfr_iscdi=true |