Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats

Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1997-11, Vol.94 (23), p.12343-12347
Hauptverfasser: Hedjran, Farah, Yeakley, Joanne M., Huh, Gene S., Hynes, Richard O., Rosenfeld, Michael G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12347
container_issue 23
container_start_page 12343
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 94
creator Hedjran, Farah
Yeakley, Joanne M.
Huh, Gene S.
Hynes, Richard O.
Rosenfeld, Michael G.
description Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.
doi_str_mv 10.1073/pnas.94.23.12343
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_9356451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43909</jstor_id><sourcerecordid>43909</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMoYzu6F0EsXIibam8ela6Am6ZnfDHoMOo6pKpujWlSlTJJDc6_N2037WPhKoTzncPhHkIeU1hSWPFX02jiUokl40vKuOB3yIKCoqUUCu6SBQBblbVg4j55EOMWAFRVwwk5UbySoqIL8mHjxxS8K3xfrF3CMJpkb7C4DFgOVx_XxefJ2daO10VzW5zZmIJt5oRdcYljMgMG2xZXOKFJ8SG51xsX8dHhPSVf35x_2bwrLz69fb9ZX5RtVatU1saslFJV1UnJqZEtYz2DBqVoa0YbbGpm-to0sus7kbsD5i92XV9lvakEPyWv97nT3AzYtblIME5PwQ4m3GpvrP5bGe03fe1vNBOKy2x_cbAH_33GmPRgY4vOmRH9HDWVPF-2hgw-_wfc-jnfx0XNgDJF5WqXBnuoDT7GgP2xBwW9m0jvJtJKaMb1r4my5emf_Y-GwyZZf3nQd86j-jtB97PLU_1IGX32fzQTT_bENiYfjojgChT_Cdckr3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201291676</pqid></control><display><type>article</type><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</creator><creatorcontrib>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</creatorcontrib><description>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.94.23.12343</identifier><identifier>PMID: 9356451</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alternative Splicing ; Animals ; Biochemistry ; Biological Sciences ; Calcitonin - biosynthesis ; Calcitonin - genetics ; Cell lines ; Cells ; Exons ; Gene expression regulation ; Genes ; Genetic mutation ; HeLa Cells ; Humans ; Introns ; Mutation ; Nucleotides ; Rats ; Repetitive Sequences, Nucleic Acid - genetics ; Ribonucleic acid ; RNA ; RNA Precursors - genetics ; Rodents ; Splicing</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1997-11, Vol.94 (23), p.12343-12347</ispartof><rights>Copyright 1993-1997 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Nov 11, 1997</rights><rights>Copyright © 1997, The National Academy of Sciences of the USA 1997</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</citedby><cites>FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/94/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43909$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43909$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,728,781,785,804,886,27928,27929,53795,53797,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9356451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hedjran, Farah</creatorcontrib><creatorcontrib>Yeakley, Joanne M.</creatorcontrib><creatorcontrib>Huh, Gene S.</creatorcontrib><creatorcontrib>Hynes, Richard O.</creatorcontrib><creatorcontrib>Rosenfeld, Michael G.</creatorcontrib><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</description><subject>Alternative Splicing</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Calcitonin - biosynthesis</subject><subject>Calcitonin - genetics</subject><subject>Cell lines</subject><subject>Cells</subject><subject>Exons</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Introns</subject><subject>Mutation</subject><subject>Nucleotides</subject><subject>Rats</subject><subject>Repetitive Sequences, Nucleic Acid - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Precursors - genetics</subject><subject>Rodents</subject><subject>Splicing</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUuLFDEUhYMoYzu6F0EsXIibam8ela6Am6ZnfDHoMOo6pKpujWlSlTJJDc6_N2037WPhKoTzncPhHkIeU1hSWPFX02jiUokl40vKuOB3yIKCoqUUCu6SBQBblbVg4j55EOMWAFRVwwk5UbySoqIL8mHjxxS8K3xfrF3CMJpkb7C4DFgOVx_XxefJ2daO10VzW5zZmIJt5oRdcYljMgMG2xZXOKFJ8SG51xsX8dHhPSVf35x_2bwrLz69fb9ZX5RtVatU1saslFJV1UnJqZEtYz2DBqVoa0YbbGpm-to0sus7kbsD5i92XV9lvakEPyWv97nT3AzYtblIME5PwQ4m3GpvrP5bGe03fe1vNBOKy2x_cbAH_33GmPRgY4vOmRH9HDWVPF-2hgw-_wfc-jnfx0XNgDJF5WqXBnuoDT7GgP2xBwW9m0jvJtJKaMb1r4my5emf_Y-GwyZZf3nQd86j-jtB97PLU_1IGX32fzQTT_bENiYfjojgChT_Cdckr3g</recordid><startdate>19971111</startdate><enddate>19971111</enddate><creator>Hedjran, Farah</creator><creator>Yeakley, Joanne M.</creator><creator>Huh, Gene S.</creator><creator>Hynes, Richard O.</creator><creator>Rosenfeld, Michael G.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences of the USA</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>19971111</creationdate><title>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</title><author>Hedjran, Farah ; Yeakley, Joanne M. ; Huh, Gene S. ; Hynes, Richard O. ; Rosenfeld, Michael G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-8aa799955d6631a6c22f20be64c821beb82af8ab6dfd48420eaf8eddf5c82b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Alternative Splicing</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Calcitonin - biosynthesis</topic><topic>Calcitonin - genetics</topic><topic>Cell lines</topic><topic>Cells</topic><topic>Exons</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Introns</topic><topic>Mutation</topic><topic>Nucleotides</topic><topic>Rats</topic><topic>Repetitive Sequences, Nucleic Acid - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Precursors - genetics</topic><topic>Rodents</topic><topic>Splicing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hedjran, Farah</creatorcontrib><creatorcontrib>Yeakley, Joanne M.</creatorcontrib><creatorcontrib>Huh, Gene S.</creatorcontrib><creatorcontrib>Hynes, Richard O.</creatorcontrib><creatorcontrib>Rosenfeld, Michael G.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hedjran, Farah</au><au>Yeakley, Joanne M.</au><au>Huh, Gene S.</au><au>Hynes, Richard O.</au><au>Rosenfeld, Michael G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1997-11-11</date><risdate>1997</risdate><volume>94</volume><issue>23</issue><spage>12343</spage><epage>12347</epage><pages>12343-12347</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multiple copies of the hexamer TGCATG have been shown to regulate fibronectin pre-mRNA alternative splicing. GCATG repeats also are clustered near the regulated calcitonin-specific 3′splice site in the rat calcitonin/CGRP gene. Specific mutagenesis of these repeats in calcitonin/CGRP pre-mRNA resulted in the loss of calcitonin-specific splicing, suggesting that the native repeats act to enhance alternative exon inclusion. Mutation of subsets of these elements implies that alternative splicing requires a minimum of two repeats, and that the combination of one intronic and one exonic repeat is necessary for optimal cell-specific splicing. However, multimerized intronic repeats inhibited calcitonin-specific splicing in both the wild-type context and in a transcript lacking endogenous repeats. These results suggest that both the number and distribution of repeats may be important features for the regulation of tissue-specific alternative splicing. Further, RNA containing a single repeat bound cell-specific protein complexes, but tissue-specific differences in protein binding were not detected by using multimerized repeats. Together, these data support a novel model for alternative splicing regulation that requires the cell-specific recognition of multiple, distributed sequence elements.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9356451</pmid><doi>10.1073/pnas.94.23.12343</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1997-11, Vol.94 (23), p.12343-12347
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_9356451
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alternative Splicing
Animals
Biochemistry
Biological Sciences
Calcitonin - biosynthesis
Calcitonin - genetics
Cell lines
Cells
Exons
Gene expression regulation
Genes
Genetic mutation
HeLa Cells
Humans
Introns
Mutation
Nucleotides
Rats
Repetitive Sequences, Nucleic Acid - genetics
Ribonucleic acid
RNA
RNA Precursors - genetics
Rodents
Splicing
title Control of Alternative Pre-mRNA Splicing by Distributed Pentameric Repeats
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A47%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20Alternative%20Pre-mRNA%20Splicing%20by%20Distributed%20Pentameric%20Repeats&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hedjran,%20Farah&rft.date=1997-11-11&rft.volume=94&rft.issue=23&rft.spage=12343&rft.epage=12347&rft.pages=12343-12347&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.94.23.12343&rft_dat=%3Cjstor_pubme%3E43909%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201291676&rft_id=info:pmid/9356451&rft_jstor_id=43909&rfr_iscdi=true