Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions

Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1996-09, Vol.93 (19), p.10315-10320
Hauptverfasser: Vidal, Marc, Brachmann, Rainer K., Fattaey, Ali, Harlow, Ed, Boeke, Jef D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10320
container_issue 19
container_start_page 10315
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 93
creator Vidal, Marc
Brachmann, Rainer K.
Fattaey, Ali
Harlow, Ed
Boeke, Jef D.
description Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the ``reverse two-hybrid system'' and ``reverse one-hybrid system'' facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.
doi_str_mv 10.1073/pnas.93.19.10315
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_8816797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40382</jstor_id><sourcerecordid>40382</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-708ba68758ccbfef343ce3e6107ee4304cf992ed4dbf235f600402f84c266f7b3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EKsvCHSEhIg6ISxZ_JbYlLlUXaKWKIihny3HGkFXWXmxv2_3vSbrpinKA02j0fm8844fQc4IXBAv2buNNWii2IGroGakeoBnBipQ1V_ghmmFMRSk55Y_Rk5RWGGNVSXyEjqQktVBihjZf4QpiguLyOpSnuyZ2bWF8W1x4uGu_7VKGdSpyKJaQweZi2aUUbGdyF3wRXPElhgydL6d6O2D5-fjQn_kM0dgRT0_RI2f6BM-mOkffP364PDktzy8-nZ0cn5e2oiyXAsvG1FJU0trGgWOcWWBQD1cDcIa5dUpRaHnbOMoqV2PMMXWSW1rXTjRsjt7v5262zRpaCz5H0-tN7NYm7nQwnb6v-O6n_hGuNJNMksH-ZrLH8GsLKet1lyz0vfEQtkkLyZioGP0vSKpaVHjIao5e_wWuwjb64Q80xYQRJtT4LN5DNoaUIrjDwgTrMXE9Jq4V00Tp28QHy8s_Dz0YpogH_dWkj8479f6Et_8mtNv2fYabPKAv9ugq5RAPLMdMUvYbjFDKEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201313791</pqid></control><display><type>article</type><title>Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Vidal, Marc ; Brachmann, Rainer K. ; Fattaey, Ali ; Harlow, Ed ; Boeke, Jef D.</creator><creatorcontrib>Vidal, Marc ; Brachmann, Rainer K. ; Fattaey, Ali ; Harlow, Ed ; Boeke, Jef D.</creatorcontrib><description>Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the ``reverse two-hybrid system'' and ``reverse one-hybrid system'' facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.93.19.10315</identifier><identifier>PMID: 8816797</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Alleles ; Base Sequence ; Binding Sites ; Blotting, Western ; Consensus Sequence ; Deoxyribonucleic acid ; DNA ; DNA Primers ; DNA, Fungal - metabolism ; DNA-Binding Proteins - metabolism ; Drug interactions ; Fungal Proteins - biosynthesis ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Genes, Reporter ; Genetic mutation ; Genetics ; Medical genetics ; Models, Genetic ; Molecular Sequence Data ; Molecules ; Mutation ; Phenotypes ; Plasmids ; Polymerase Chain Reaction ; Promoter Regions, Genetic ; Protein Multimerization ; Proteins ; Recombinant Proteins - biosynthesis ; Reporter genes ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins ; Transcription Factors ; Two-Hybrid System Techniques ; Yeast ; Yeasts</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1996-09, Vol.93 (19), p.10315-10320</ispartof><rights>Copyright 1996 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Sep 17, 1996</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-708ba68758ccbfef343ce3e6107ee4304cf992ed4dbf235f600402f84c266f7b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/93/19.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40382$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40382$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8816797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vidal, Marc</creatorcontrib><creatorcontrib>Brachmann, Rainer K.</creatorcontrib><creatorcontrib>Fattaey, Ali</creatorcontrib><creatorcontrib>Harlow, Ed</creatorcontrib><creatorcontrib>Boeke, Jef D.</creatorcontrib><title>Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the ``reverse two-hybrid system'' and ``reverse one-hybrid system'' facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.</description><subject>Alleles</subject><subject>Base Sequence</subject><subject>Binding Sites</subject><subject>Blotting, Western</subject><subject>Consensus Sequence</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Primers</subject><subject>DNA, Fungal - metabolism</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Drug interactions</subject><subject>Fungal Proteins - biosynthesis</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Genes, Reporter</subject><subject>Genetic mutation</subject><subject>Genetics</subject><subject>Medical genetics</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Mutation</subject><subject>Phenotypes</subject><subject>Plasmids</subject><subject>Polymerase Chain Reaction</subject><subject>Promoter Regions, Genetic</subject><subject>Protein Multimerization</subject><subject>Proteins</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Reporter genes</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins</subject><subject>Transcription Factors</subject><subject>Two-Hybrid System Techniques</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EKsvCHSEhIg6ISxZ_JbYlLlUXaKWKIihny3HGkFXWXmxv2_3vSbrpinKA02j0fm8844fQc4IXBAv2buNNWii2IGroGakeoBnBipQ1V_ghmmFMRSk55Y_Rk5RWGGNVSXyEjqQktVBihjZf4QpiguLyOpSnuyZ2bWF8W1x4uGu_7VKGdSpyKJaQweZi2aUUbGdyF3wRXPElhgydL6d6O2D5-fjQn_kM0dgRT0_RI2f6BM-mOkffP364PDktzy8-nZ0cn5e2oiyXAsvG1FJU0trGgWOcWWBQD1cDcIa5dUpRaHnbOMoqV2PMMXWSW1rXTjRsjt7v5262zRpaCz5H0-tN7NYm7nQwnb6v-O6n_hGuNJNMksH-ZrLH8GsLKet1lyz0vfEQtkkLyZioGP0vSKpaVHjIao5e_wWuwjb64Q80xYQRJtT4LN5DNoaUIrjDwgTrMXE9Jq4V00Tp28QHy8s_Dz0YpogH_dWkj8479f6Et_8mtNv2fYabPKAv9ugq5RAPLMdMUvYbjFDKEA</recordid><startdate>19960917</startdate><enddate>19960917</enddate><creator>Vidal, Marc</creator><creator>Brachmann, Rainer K.</creator><creator>Fattaey, Ali</creator><creator>Harlow, Ed</creator><creator>Boeke, Jef D.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19960917</creationdate><title>Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions</title><author>Vidal, Marc ; Brachmann, Rainer K. ; Fattaey, Ali ; Harlow, Ed ; Boeke, Jef D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-708ba68758ccbfef343ce3e6107ee4304cf992ed4dbf235f600402f84c266f7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Alleles</topic><topic>Base Sequence</topic><topic>Binding Sites</topic><topic>Blotting, Western</topic><topic>Consensus Sequence</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Primers</topic><topic>DNA, Fungal - metabolism</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Drug interactions</topic><topic>Fungal Proteins - biosynthesis</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Genes, Reporter</topic><topic>Genetic mutation</topic><topic>Genetics</topic><topic>Medical genetics</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Mutation</topic><topic>Phenotypes</topic><topic>Plasmids</topic><topic>Polymerase Chain Reaction</topic><topic>Promoter Regions, Genetic</topic><topic>Protein Multimerization</topic><topic>Proteins</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Reporter genes</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins</topic><topic>Transcription Factors</topic><topic>Two-Hybrid System Techniques</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vidal, Marc</creatorcontrib><creatorcontrib>Brachmann, Rainer K.</creatorcontrib><creatorcontrib>Fattaey, Ali</creatorcontrib><creatorcontrib>Harlow, Ed</creatorcontrib><creatorcontrib>Boeke, Jef D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vidal, Marc</au><au>Brachmann, Rainer K.</au><au>Fattaey, Ali</au><au>Harlow, Ed</au><au>Boeke, Jef D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1996-09-17</date><risdate>1996</risdate><volume>93</volume><issue>19</issue><spage>10315</spage><epage>10320</epage><pages>10315-10320</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Macromolecular interactions define many biological phenomena. Although genetic methods are available to identify novel protein-protein and DNA-protein interactions, no genetic system has thus far been described to identify molecules or mutations that dissociate known interactions. Herein, we describe genetic systems that detect such events in the yeast Saccharomyces cerevisiae. We have engineered yeast strains in which the interaction of two proteins expressed in the context of the two-hybrid system or the interaction between a DNA-binding protein and its binding site in the context of the one-hybrid system is deleterious to growth. Under these conditions, dissociation of the interaction provides a selective growth advantage, thereby facilitating detection. These methods referred to as the ``reverse two-hybrid system'' and ``reverse one-hybrid system'' facilitate the study of the structure-function relationships and regulation of protein-protein and DNA-protein interactions. They should also facilitate the selection of dissociator molecules that could be used as therapeutic agents.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>8816797</pmid><doi>10.1073/pnas.93.19.10315</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1996-09, Vol.93 (19), p.10315-10320
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmed_primary_8816797
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Base Sequence
Binding Sites
Blotting, Western
Consensus Sequence
Deoxyribonucleic acid
DNA
DNA Primers
DNA, Fungal - metabolism
DNA-Binding Proteins - metabolism
Drug interactions
Fungal Proteins - biosynthesis
Fungal Proteins - genetics
Fungal Proteins - metabolism
Genes, Reporter
Genetic mutation
Genetics
Medical genetics
Models, Genetic
Molecular Sequence Data
Molecules
Mutation
Phenotypes
Plasmids
Polymerase Chain Reaction
Promoter Regions, Genetic
Protein Multimerization
Proteins
Recombinant Proteins - biosynthesis
Reporter genes
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins
Transcription Factors
Two-Hybrid System Techniques
Yeast
Yeasts
title Reverse Two-Hybrid and One-Hybrid Systems to Detect Dissociation of Protein-Protein and DNA-Protein Interactions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T03%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reverse%20Two-Hybrid%20and%20One-Hybrid%20Systems%20to%20Detect%20Dissociation%20of%20Protein-Protein%20and%20DNA-Protein%20Interactions&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Vidal,%20Marc&rft.date=1996-09-17&rft.volume=93&rft.issue=19&rft.spage=10315&rft.epage=10320&rft.pages=10315-10320&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.93.19.10315&rft_dat=%3Cjstor_pubme%3E40382%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201313791&rft_id=info:pmid/8816797&rft_jstor_id=40382&rfr_iscdi=true