Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation

Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurophysiology 1993-10, Vol.70 (4), p.1713-1716
Hauptverfasser: Ye, Q, Stewart, R. E, Heck, G. L, Hill, D. L, DeSimone, J. A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1716
container_issue 4
container_start_page 1713
container_title Journal of neurophysiology
container_volume 70
creator Ye, Q
Stewart, R. E
Heck, G. L
Hill, D. L
DeSimone, J. A
description Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally (Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses that were enhanced at negative voltage clamp and suppressed at positive voltage clamp. In contrast, CT responses from Na(+)-restricted rats were virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of the CT response shows that Na(+)-restricted rats have < 10% of the density of functional apical Na+ channels normally present in control rats demonstrating that early dietary Na(+)-restriction prevents the functional expression of these key elements in salt taste transduction. Furthermore, the data demonstrate the value of this technique in assessing involvement of distinct cellular domains in taste transduction.
doi_str_mv 10.1152/jn.1993.70.4.1713
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_8283226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76157179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</originalsourceid><addsrcrecordid>eNpFkcmO1DAQhi0EGpqBB-CA5ANi0SjBjreEGxpWaQQXOFuOY3e7ldgZ22nUb8Lj4tCt5uSlvvqr6i8AnmNUY8yad3tf464jtUA1rbHA5AHYlP-mwqxrH4INQuVOkBCPwZOU9gghwVBzBa7apiVNwzfgz0dnsopH-F29uXlbRZNydDq74OEczcH4nOBQzjHMU3nAYKFd_D9AjSXpBuqd8t6MCToPs0rZQG3GEarZ6UJMZuqj8ia9L3qhZPfHFTy4Q7jE4CGMWW0NnE3MS-zVqv4UPLJqTObZ-bwGvz5_-nn7tbr78eXb7Ye7ShMmctVrRXCr0cA1pQYNmNuBC0I5aSlvuBV2YJwzi1XPaatabXWvrWKGNVhT1ZBr8OqkW9q7X8r4cnJpnaA0FpYkBcdMYNEVEJ9AHUNK0Vg5RzcV6yRGct2G3Hu5bkMKJKlct1FyXpzFl34ywyXjbH-JvzzHVSpu2eKGdumCEdFhilbs9Qnbue3ut4tGzrtjcmEM2-Na9X_Bv82-o48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76157179</pqid></control><display><type>article</type><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</creator><creatorcontrib>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</creatorcontrib><description>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally (Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses that were enhanced at negative voltage clamp and suppressed at positive voltage clamp. In contrast, CT responses from Na(+)-restricted rats were virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of the CT response shows that Na(+)-restricted rats have &lt; 10% of the density of functional apical Na+ channels normally present in control rats demonstrating that early dietary Na(+)-restriction prevents the functional expression of these key elements in salt taste transduction. Furthermore, the data demonstrate the value of this technique in assessing involvement of distinct cellular domains in taste transduction.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.1993.70.4.1713</identifier><identifier>PMID: 8283226</identifier><identifier>CODEN: JONEA4</identifier><language>eng</language><publisher>Bethesda, MD: Am Phys Soc</publisher><subject>Animals ; Biological and medical sciences ; Cell Membrane - physiology ; Chorda Tympani Nerve - cytology ; Chorda Tympani Nerve - physiology ; Diet, Sodium-Restricted ; Electrophysiology ; Female ; Fundamental and applied biological sciences. Psychology ; Olfactory system and olfaction. Gustatory system and gustation ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - physiology ; Sodium Channels - physiology ; Taste Buds - cytology ; Taste Buds - growth &amp; development ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurophysiology, 1993-10, Vol.70 (4), p.1713-1716</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3791406$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8283226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Q</creatorcontrib><creatorcontrib>Stewart, R. E</creatorcontrib><creatorcontrib>Heck, G. L</creatorcontrib><creatorcontrib>Hill, D. L</creatorcontrib><creatorcontrib>DeSimone, J. A</creatorcontrib><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally (Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses that were enhanced at negative voltage clamp and suppressed at positive voltage clamp. In contrast, CT responses from Na(+)-restricted rats were virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of the CT response shows that Na(+)-restricted rats have &lt; 10% of the density of functional apical Na+ channels normally present in control rats demonstrating that early dietary Na(+)-restriction prevents the functional expression of these key elements in salt taste transduction. Furthermore, the data demonstrate the value of this technique in assessing involvement of distinct cellular domains in taste transduction.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Chorda Tympani Nerve - cytology</subject><subject>Chorda Tympani Nerve - physiology</subject><subject>Diet, Sodium-Restricted</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Olfactory system and olfaction. Gustatory system and gustation</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - physiology</subject><subject>Sodium Channels - physiology</subject><subject>Taste Buds - cytology</subject><subject>Taste Buds - growth &amp; development</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkcmO1DAQhi0EGpqBB-CA5ANi0SjBjreEGxpWaQQXOFuOY3e7ldgZ22nUb8Lj4tCt5uSlvvqr6i8AnmNUY8yad3tf464jtUA1rbHA5AHYlP-mwqxrH4INQuVOkBCPwZOU9gghwVBzBa7apiVNwzfgz0dnsopH-F29uXlbRZNydDq74OEczcH4nOBQzjHMU3nAYKFd_D9AjSXpBuqd8t6MCToPs0rZQG3GEarZ6UJMZuqj8ia9L3qhZPfHFTy4Q7jE4CGMWW0NnE3MS-zVqv4UPLJqTObZ-bwGvz5_-nn7tbr78eXb7Ye7ShMmctVrRXCr0cA1pQYNmNuBC0I5aSlvuBV2YJwzi1XPaatabXWvrWKGNVhT1ZBr8OqkW9q7X8r4cnJpnaA0FpYkBcdMYNEVEJ9AHUNK0Vg5RzcV6yRGct2G3Hu5bkMKJKlct1FyXpzFl34ywyXjbH-JvzzHVSpu2eKGdumCEdFhilbs9Qnbue3ut4tGzrtjcmEM2-Na9X_Bv82-o48</recordid><startdate>19931001</startdate><enddate>19931001</enddate><creator>Ye, Q</creator><creator>Stewart, R. E</creator><creator>Heck, G. L</creator><creator>Hill, D. L</creator><creator>DeSimone, J. A</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931001</creationdate><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><author>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Chorda Tympani Nerve - cytology</topic><topic>Chorda Tympani Nerve - physiology</topic><topic>Diet, Sodium-Restricted</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Olfactory system and olfaction. Gustatory system and gustation</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - physiology</topic><topic>Sodium Channels - physiology</topic><topic>Taste Buds - cytology</topic><topic>Taste Buds - growth &amp; development</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Q</creatorcontrib><creatorcontrib>Stewart, R. E</creatorcontrib><creatorcontrib>Heck, G. L</creatorcontrib><creatorcontrib>Hill, D. L</creatorcontrib><creatorcontrib>DeSimone, J. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Q</au><au>Stewart, R. E</au><au>Heck, G. L</au><au>Hill, D. L</au><au>DeSimone, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>1993-10-01</date><risdate>1993</risdate><volume>70</volume><issue>4</issue><spage>1713</spage><epage>1716</epage><pages>1713-1716</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><coden>JONEA4</coden><abstract>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally (Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses that were enhanced at negative voltage clamp and suppressed at positive voltage clamp. In contrast, CT responses from Na(+)-restricted rats were virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of the CT response shows that Na(+)-restricted rats have &lt; 10% of the density of functional apical Na+ channels normally present in control rats demonstrating that early dietary Na(+)-restriction prevents the functional expression of these key elements in salt taste transduction. Furthermore, the data demonstrate the value of this technique in assessing involvement of distinct cellular domains in taste transduction.</abstract><cop>Bethesda, MD</cop><pub>Am Phys Soc</pub><pmid>8283226</pmid><doi>10.1152/jn.1993.70.4.1713</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 1993-10, Vol.70 (4), p.1713-1716
issn 0022-3077
1522-1598
language eng
recordid cdi_pubmed_primary_8283226
source MEDLINE; Alma/SFX Local Collection
subjects Animals
Biological and medical sciences
Cell Membrane - physiology
Chorda Tympani Nerve - cytology
Chorda Tympani Nerve - physiology
Diet, Sodium-Restricted
Electrophysiology
Female
Fundamental and applied biological sciences. Psychology
Olfactory system and olfaction. Gustatory system and gustation
Pregnancy
Rats
Rats, Sprague-Dawley
Signal Transduction - physiology
Sodium Channels - physiology
Taste Buds - cytology
Taste Buds - growth & development
Vertebrates: nervous system and sense organs
title Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20Na(+)-restriction%20prevents%20development%20of%20functional%20Na+%20channels%20in%20taste%20cell%20apical%20membranes:%20proof%20by%20in%20vivo%20membrane%20voltage%20perturbation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Ye,%20Q&rft.date=1993-10-01&rft.volume=70&rft.issue=4&rft.spage=1713&rft.epage=1716&rft.pages=1713-1716&rft.issn=0022-3077&rft.eissn=1522-1598&rft.coden=JONEA4&rft_id=info:doi/10.1152/jn.1993.70.4.1713&rft_dat=%3Cproquest_pubme%3E76157179%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76157179&rft_id=info:pmid/8283226&rfr_iscdi=true