Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation
Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone Department of Physiology, Virginia Commonwealth University, Richmond 23298. 1. Chorda tympani (CT) neural responses to NaCl were recorded while the potential across the apical membrane of taste cells was perturbed by voltage clamp in ra...
Gespeichert in:
Veröffentlicht in: | Journal of neurophysiology 1993-10, Vol.70 (4), p.1713-1716 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1716 |
---|---|
container_issue | 4 |
container_start_page | 1713 |
container_title | Journal of neurophysiology |
container_volume | 70 |
creator | Ye, Q Stewart, R. E Heck, G. L Hill, D. L DeSimone, J. A |
description | Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone
Department of Physiology, Virginia Commonwealth University, Richmond 23298.
1. Chorda tympani (CT) neural responses to NaCl were recorded while the
potential across the apical membrane of taste cells was perturbed by
voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally
(Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses
that were enhanced at negative voltage clamp and suppressed at positive
voltage clamp. In contrast, CT responses from Na(+)-restricted rats were
virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of
the CT response shows that Na(+)-restricted rats have < 10% of the
density of functional apical Na+ channels normally present in control rats
demonstrating that early dietary Na(+)-restriction prevents the functional
expression of these key elements in salt taste transduction. Furthermore,
the data demonstrate the value of this technique in assessing involvement
of distinct cellular domains in taste transduction. |
doi_str_mv | 10.1152/jn.1993.70.4.1713 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_8283226</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76157179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</originalsourceid><addsrcrecordid>eNpFkcmO1DAQhi0EGpqBB-CA5ANi0SjBjreEGxpWaQQXOFuOY3e7ldgZ22nUb8Lj4tCt5uSlvvqr6i8AnmNUY8yad3tf464jtUA1rbHA5AHYlP-mwqxrH4INQuVOkBCPwZOU9gghwVBzBa7apiVNwzfgz0dnsopH-F29uXlbRZNydDq74OEczcH4nOBQzjHMU3nAYKFd_D9AjSXpBuqd8t6MCToPs0rZQG3GEarZ6UJMZuqj8ia9L3qhZPfHFTy4Q7jE4CGMWW0NnE3MS-zVqv4UPLJqTObZ-bwGvz5_-nn7tbr78eXb7Ye7ShMmctVrRXCr0cA1pQYNmNuBC0I5aSlvuBV2YJwzi1XPaatabXWvrWKGNVhT1ZBr8OqkW9q7X8r4cnJpnaA0FpYkBcdMYNEVEJ9AHUNK0Vg5RzcV6yRGct2G3Hu5bkMKJKlct1FyXpzFl34ywyXjbH-JvzzHVSpu2eKGdumCEdFhilbs9Qnbue3ut4tGzrtjcmEM2-Na9X_Bv82-o48</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76157179</pqid></control><display><type>article</type><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</creator><creatorcontrib>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</creatorcontrib><description>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone
Department of Physiology, Virginia Commonwealth University, Richmond 23298.
1. Chorda tympani (CT) neural responses to NaCl were recorded while the
potential across the apical membrane of taste cells was perturbed by
voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally
(Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses
that were enhanced at negative voltage clamp and suppressed at positive
voltage clamp. In contrast, CT responses from Na(+)-restricted rats were
virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of
the CT response shows that Na(+)-restricted rats have < 10% of the
density of functional apical Na+ channels normally present in control rats
demonstrating that early dietary Na(+)-restriction prevents the functional
expression of these key elements in salt taste transduction. Furthermore,
the data demonstrate the value of this technique in assessing involvement
of distinct cellular domains in taste transduction.</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.1993.70.4.1713</identifier><identifier>PMID: 8283226</identifier><identifier>CODEN: JONEA4</identifier><language>eng</language><publisher>Bethesda, MD: Am Phys Soc</publisher><subject>Animals ; Biological and medical sciences ; Cell Membrane - physiology ; Chorda Tympani Nerve - cytology ; Chorda Tympani Nerve - physiology ; Diet, Sodium-Restricted ; Electrophysiology ; Female ; Fundamental and applied biological sciences. Psychology ; Olfactory system and olfaction. Gustatory system and gustation ; Pregnancy ; Rats ; Rats, Sprague-Dawley ; Signal Transduction - physiology ; Sodium Channels - physiology ; Taste Buds - cytology ; Taste Buds - growth & development ; Vertebrates: nervous system and sense organs</subject><ispartof>Journal of neurophysiology, 1993-10, Vol.70 (4), p.1713-1716</ispartof><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3791406$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8283226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Q</creatorcontrib><creatorcontrib>Stewart, R. E</creatorcontrib><creatorcontrib>Heck, G. L</creatorcontrib><creatorcontrib>Hill, D. L</creatorcontrib><creatorcontrib>DeSimone, J. A</creatorcontrib><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone
Department of Physiology, Virginia Commonwealth University, Richmond 23298.
1. Chorda tympani (CT) neural responses to NaCl were recorded while the
potential across the apical membrane of taste cells was perturbed by
voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally
(Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses
that were enhanced at negative voltage clamp and suppressed at positive
voltage clamp. In contrast, CT responses from Na(+)-restricted rats were
virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of
the CT response shows that Na(+)-restricted rats have < 10% of the
density of functional apical Na+ channels normally present in control rats
demonstrating that early dietary Na(+)-restriction prevents the functional
expression of these key elements in salt taste transduction. Furthermore,
the data demonstrate the value of this technique in assessing involvement
of distinct cellular domains in taste transduction.</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Membrane - physiology</subject><subject>Chorda Tympani Nerve - cytology</subject><subject>Chorda Tympani Nerve - physiology</subject><subject>Diet, Sodium-Restricted</subject><subject>Electrophysiology</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Olfactory system and olfaction. Gustatory system and gustation</subject><subject>Pregnancy</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal Transduction - physiology</subject><subject>Sodium Channels - physiology</subject><subject>Taste Buds - cytology</subject><subject>Taste Buds - growth & development</subject><subject>Vertebrates: nervous system and sense organs</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkcmO1DAQhi0EGpqBB-CA5ANi0SjBjreEGxpWaQQXOFuOY3e7ldgZ22nUb8Lj4tCt5uSlvvqr6i8AnmNUY8yad3tf464jtUA1rbHA5AHYlP-mwqxrH4INQuVOkBCPwZOU9gghwVBzBa7apiVNwzfgz0dnsopH-F29uXlbRZNydDq74OEczcH4nOBQzjHMU3nAYKFd_D9AjSXpBuqd8t6MCToPs0rZQG3GEarZ6UJMZuqj8ia9L3qhZPfHFTy4Q7jE4CGMWW0NnE3MS-zVqv4UPLJqTObZ-bwGvz5_-nn7tbr78eXb7Ye7ShMmctVrRXCr0cA1pQYNmNuBC0I5aSlvuBV2YJwzi1XPaatabXWvrWKGNVhT1ZBr8OqkW9q7X8r4cnJpnaA0FpYkBcdMYNEVEJ9AHUNK0Vg5RzcV6yRGct2G3Hu5bkMKJKlct1FyXpzFl34ywyXjbH-JvzzHVSpu2eKGdumCEdFhilbs9Qnbue3ut4tGzrtjcmEM2-Na9X_Bv82-o48</recordid><startdate>19931001</startdate><enddate>19931001</enddate><creator>Ye, Q</creator><creator>Stewart, R. E</creator><creator>Heck, G. L</creator><creator>Hill, D. L</creator><creator>DeSimone, J. A</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931001</creationdate><title>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</title><author>Ye, Q ; Stewart, R. E ; Heck, G. L ; Hill, D. L ; DeSimone, J. A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-bca318c0d6c44e0d16fd67346384626f7fd5665f1ab648a8cfcbcfa5e521c4a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Membrane - physiology</topic><topic>Chorda Tympani Nerve - cytology</topic><topic>Chorda Tympani Nerve - physiology</topic><topic>Diet, Sodium-Restricted</topic><topic>Electrophysiology</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Olfactory system and olfaction. Gustatory system and gustation</topic><topic>Pregnancy</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal Transduction - physiology</topic><topic>Sodium Channels - physiology</topic><topic>Taste Buds - cytology</topic><topic>Taste Buds - growth & development</topic><topic>Vertebrates: nervous system and sense organs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Q</creatorcontrib><creatorcontrib>Stewart, R. E</creatorcontrib><creatorcontrib>Heck, G. L</creatorcontrib><creatorcontrib>Hill, D. L</creatorcontrib><creatorcontrib>DeSimone, J. A</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Q</au><au>Stewart, R. E</au><au>Heck, G. L</au><au>Hill, D. L</au><au>DeSimone, J. A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>1993-10-01</date><risdate>1993</risdate><volume>70</volume><issue>4</issue><spage>1713</spage><epage>1716</epage><pages>1713-1716</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><coden>JONEA4</coden><abstract>Q. Ye, R. E. Stewart, G. L. Heck, D. L. Hill and J. A. DeSimone
Department of Physiology, Virginia Commonwealth University, Richmond 23298.
1. Chorda tympani (CT) neural responses to NaCl were recorded while the
potential across the apical membrane of taste cells was perturbed by
voltage clamp in rats fed a Na(+)-restricted diet pre- and postnatally
(Na(+)-restricted rats) and in controls. 2. Control rats gave CT responses
that were enhanced at negative voltage clamp and suppressed at positive
voltage clamp. In contrast, CT responses from Na(+)-restricted rats were
virtually voltage insensitive. 3. Analysis of the voltage-sensitivity of
the CT response shows that Na(+)-restricted rats have < 10% of the
density of functional apical Na+ channels normally present in control rats
demonstrating that early dietary Na(+)-restriction prevents the functional
expression of these key elements in salt taste transduction. Furthermore,
the data demonstrate the value of this technique in assessing involvement
of distinct cellular domains in taste transduction.</abstract><cop>Bethesda, MD</cop><pub>Am Phys Soc</pub><pmid>8283226</pmid><doi>10.1152/jn.1993.70.4.1713</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3077 |
ispartof | Journal of neurophysiology, 1993-10, Vol.70 (4), p.1713-1716 |
issn | 0022-3077 1522-1598 |
language | eng |
recordid | cdi_pubmed_primary_8283226 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biological and medical sciences Cell Membrane - physiology Chorda Tympani Nerve - cytology Chorda Tympani Nerve - physiology Diet, Sodium-Restricted Electrophysiology Female Fundamental and applied biological sciences. Psychology Olfactory system and olfaction. Gustatory system and gustation Pregnancy Rats Rats, Sprague-Dawley Signal Transduction - physiology Sodium Channels - physiology Taste Buds - cytology Taste Buds - growth & development Vertebrates: nervous system and sense organs |
title | Dietary Na(+)-restriction prevents development of functional Na+ channels in taste cell apical membranes: proof by in vivo membrane voltage perturbation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A11%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dietary%20Na(+)-restriction%20prevents%20development%20of%20functional%20Na+%20channels%20in%20taste%20cell%20apical%20membranes:%20proof%20by%20in%20vivo%20membrane%20voltage%20perturbation&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Ye,%20Q&rft.date=1993-10-01&rft.volume=70&rft.issue=4&rft.spage=1713&rft.epage=1716&rft.pages=1713-1716&rft.issn=0022-3077&rft.eissn=1522-1598&rft.coden=JONEA4&rft_id=info:doi/10.1152/jn.1993.70.4.1713&rft_dat=%3Cproquest_pubme%3E76157179%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=76157179&rft_id=info:pmid/8283226&rfr_iscdi=true |