Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200

Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 1995, Vol.61 (1), p.8-12
Hauptverfasser: PICARDAL, F, ARNOLD, R. G, HUEY, B. B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 8
container_title Applied and Environmental Microbiology
container_volume 61
creator PICARDAL, F
ARNOLD, R. G
HUEY, B. B
description Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.
doi_str_mv 10.1128/aem.61.1.8-12.1995
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_7887629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4487662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</originalsourceid><addsrcrecordid>eNpdUctu1DAUtRCoTAd-AAkUIcQugx-JYy9YoKoFpEosStfWHedm4iqxBztp1S1fjqMZDYWVr3UePseXkDeMbhjj6hPguJFswzaqZHzDtK6fkRWjWpW1EPI5WVGqdcl5RV-S85TuKKUVleqMnDVKNZLrFfl92XVop1SErsAhTzH4og0-xAJ8W4C1uJ_yxQbfuskFn5m-iNjOdnL3WLTYwxB26GEBF5cJpwi2H0IMI049eCy2j8VNjw95HAYo9vMUsQPrMJtxSl-RFx0MCV8fzzW5vbr8efGtvP7x9fvFl-vSyqqaSi0Ub7CyUlJlaxDNFjurQGzR2lZopusWW4o1SMarGhvEbSfyKJRtOmwbsSafD777eTtia9HnoIPZRzdCfDQBnPkX8a43u3BvmGx4LbP-41Efw68Z02RGl-xSyWOYU6apHCP__Jq8_494F-boczfDaa0FU4plEj-QbAwp5Q85BWHULNs1ebtGMsOMMoybZbtZ9PZphZPkuM6MfzjikCwMXQRvXTrRRMUlrZYm7w603u36BxfRQBqfvPeX0EEwsIvZ4_ZmSUCZlFpV4g-qeMVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205931881</pqid></control><display><type>article</type><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B</creator><creatorcontrib>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B ; Indiana University, Bloomington, IN ; Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><description>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.61.1.8-12.1995</identifier><identifier>PMID: 7887629</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>anion ; aniones ; anions ; azote ; Bacteria ; bacteria gram negativa ; bacterie gram negatif ; biodegradacion ; biodegradation ; Biological and medical sciences ; Biology ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; carbon tetrachloride ; Carbon Tetrachloride - metabolism ; cation ; cationes ; cations ; chemical reactions ; compose organique ; compuestos organicos ; control de la contaminacion ; Electron Transport ; Electrons ; fer ; Fumarates - metabolism ; Fumarates - pharmacology ; Fundamental and applied biological sciences. Psychology ; gram negative bacteria ; Gram-Negative Facultatively Anaerobic Rods - metabolism ; Halogens - metabolism ; hierro ; iron ; lutte antipollution ; Methylamines - metabolism ; Methylamines - pharmacology ; Mission oriented research ; Models, Biological ; nitrate ; nitrates ; nitratos ; nitrite ; nitrites ; nitritos ; nitrogen ; nitrogeno ; organic compounds ; Oxidation-Reduction ; oxidoreductions ; oxigeno ; oxirreducion ; oxydoreduction ; oxygen ; Oxygen - metabolism ; Oxygen - pharmacology ; oxygene ; Physiology and metabolism ; pollution control ; reacciones quimicas ; reaction chimique ; Shewanella putrefaciens ; tetrachlorure de carbone ; tetracloruro de carbono</subject><ispartof>Applied and Environmental Microbiology, 1995, Vol.61 (1), p.8-12</ispartof><rights>1995 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC167256/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC167256/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3190,3191,4026,27930,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3426046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7887629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PICARDAL, F</creatorcontrib><creatorcontrib>ARNOLD, R. G</creatorcontrib><creatorcontrib>HUEY, B. B</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><creatorcontrib>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</description><subject>anion</subject><subject>aniones</subject><subject>anions</subject><subject>azote</subject><subject>Bacteria</subject><subject>bacteria gram negativa</subject><subject>bacterie gram negatif</subject><subject>biodegradacion</subject><subject>biodegradation</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>carbon tetrachloride</subject><subject>Carbon Tetrachloride - metabolism</subject><subject>cation</subject><subject>cationes</subject><subject>cations</subject><subject>chemical reactions</subject><subject>compose organique</subject><subject>compuestos organicos</subject><subject>control de la contaminacion</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>fer</subject><subject>Fumarates - metabolism</subject><subject>Fumarates - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gram negative bacteria</subject><subject>Gram-Negative Facultatively Anaerobic Rods - metabolism</subject><subject>Halogens - metabolism</subject><subject>hierro</subject><subject>iron</subject><subject>lutte antipollution</subject><subject>Methylamines - metabolism</subject><subject>Methylamines - pharmacology</subject><subject>Mission oriented research</subject><subject>Models, Biological</subject><subject>nitrate</subject><subject>nitrates</subject><subject>nitratos</subject><subject>nitrite</subject><subject>nitrites</subject><subject>nitritos</subject><subject>nitrogen</subject><subject>nitrogeno</subject><subject>organic compounds</subject><subject>Oxidation-Reduction</subject><subject>oxidoreductions</subject><subject>oxigeno</subject><subject>oxirreducion</subject><subject>oxydoreduction</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen - pharmacology</subject><subject>oxygene</subject><subject>Physiology and metabolism</subject><subject>pollution control</subject><subject>reacciones quimicas</subject><subject>reaction chimique</subject><subject>Shewanella putrefaciens</subject><subject>tetrachlorure de carbone</subject><subject>tetracloruro de carbono</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUctu1DAUtRCoTAd-AAkUIcQugx-JYy9YoKoFpEosStfWHedm4iqxBztp1S1fjqMZDYWVr3UePseXkDeMbhjj6hPguJFswzaqZHzDtK6fkRWjWpW1EPI5WVGqdcl5RV-S85TuKKUVleqMnDVKNZLrFfl92XVop1SErsAhTzH4og0-xAJ8W4C1uJ_yxQbfuskFn5m-iNjOdnL3WLTYwxB26GEBF5cJpwi2H0IMI049eCy2j8VNjw95HAYo9vMUsQPrMJtxSl-RFx0MCV8fzzW5vbr8efGtvP7x9fvFl-vSyqqaSi0Ub7CyUlJlaxDNFjurQGzR2lZopusWW4o1SMarGhvEbSfyKJRtOmwbsSafD777eTtia9HnoIPZRzdCfDQBnPkX8a43u3BvmGx4LbP-41Efw68Z02RGl-xSyWOYU6apHCP__Jq8_494F-boczfDaa0FU4plEj-QbAwp5Q85BWHULNs1ebtGMsOMMoybZbtZ9PZphZPkuM6MfzjikCwMXQRvXTrRRMUlrZYm7w603u36BxfRQBqfvPeX0EEwsIvZ4_ZmSUCZlFpV4g-qeMVs</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>PICARDAL, F</creator><creator>ARNOLD, R. G</creator><creator>HUEY, B. B</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>1995</creationdate><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><author>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>anion</topic><topic>aniones</topic><topic>anions</topic><topic>azote</topic><topic>Bacteria</topic><topic>bacteria gram negativa</topic><topic>bacterie gram negatif</topic><topic>biodegradacion</topic><topic>biodegradation</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>carbon tetrachloride</topic><topic>Carbon Tetrachloride - metabolism</topic><topic>cation</topic><topic>cationes</topic><topic>cations</topic><topic>chemical reactions</topic><topic>compose organique</topic><topic>compuestos organicos</topic><topic>control de la contaminacion</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>fer</topic><topic>Fumarates - metabolism</topic><topic>Fumarates - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gram negative bacteria</topic><topic>Gram-Negative Facultatively Anaerobic Rods - metabolism</topic><topic>Halogens - metabolism</topic><topic>hierro</topic><topic>iron</topic><topic>lutte antipollution</topic><topic>Methylamines - metabolism</topic><topic>Methylamines - pharmacology</topic><topic>Mission oriented research</topic><topic>Models, Biological</topic><topic>nitrate</topic><topic>nitrates</topic><topic>nitratos</topic><topic>nitrite</topic><topic>nitrites</topic><topic>nitritos</topic><topic>nitrogen</topic><topic>nitrogeno</topic><topic>organic compounds</topic><topic>Oxidation-Reduction</topic><topic>oxidoreductions</topic><topic>oxigeno</topic><topic>oxirreducion</topic><topic>oxydoreduction</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen - pharmacology</topic><topic>oxygene</topic><topic>Physiology and metabolism</topic><topic>pollution control</topic><topic>reacciones quimicas</topic><topic>reaction chimique</topic><topic>Shewanella putrefaciens</topic><topic>tetrachlorure de carbone</topic><topic>tetracloruro de carbono</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PICARDAL, F</creatorcontrib><creatorcontrib>ARNOLD, R. G</creatorcontrib><creatorcontrib>HUEY, B. B</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><creatorcontrib>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PICARDAL, F</au><au>ARNOLD, R. G</au><au>HUEY, B. B</au><aucorp>Indiana University, Bloomington, IN</aucorp><aucorp>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1995</date><risdate>1995</risdate><volume>61</volume><issue>1</issue><spage>8</spage><epage>12</epage><pages>8-12</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>7887629</pmid><doi>10.1128/aem.61.1.8-12.1995</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 1995, Vol.61 (1), p.8-12
issn 0099-2240
1098-5336
language eng
recordid cdi_pubmed_primary_7887629
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects anion
aniones
anions
azote
Bacteria
bacteria gram negativa
bacterie gram negatif
biodegradacion
biodegradation
Biological and medical sciences
Biology
Biology of microorganisms of confirmed or potential industrial interest
Biotechnology
carbon tetrachloride
Carbon Tetrachloride - metabolism
cation
cationes
cations
chemical reactions
compose organique
compuestos organicos
control de la contaminacion
Electron Transport
Electrons
fer
Fumarates - metabolism
Fumarates - pharmacology
Fundamental and applied biological sciences. Psychology
gram negative bacteria
Gram-Negative Facultatively Anaerobic Rods - metabolism
Halogens - metabolism
hierro
iron
lutte antipollution
Methylamines - metabolism
Methylamines - pharmacology
Mission oriented research
Models, Biological
nitrate
nitrates
nitratos
nitrite
nitrites
nitritos
nitrogen
nitrogeno
organic compounds
Oxidation-Reduction
oxidoreductions
oxigeno
oxirreducion
oxydoreduction
oxygen
Oxygen - metabolism
Oxygen - pharmacology
oxygene
Physiology and metabolism
pollution control
reacciones quimicas
reaction chimique
Shewanella putrefaciens
tetrachlorure de carbone
tetracloruro de carbono
title Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20electron%20donor%20and%20acceptor%20conditions%20on%20reductive%20dehalogenation%20of%20tetrachloromethane%20by%20Shewanella%20putrefaciens%20200&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=PICARDAL,%20F&rft.aucorp=Indiana%20University,%20Bloomington,%20IN&rft.date=1995&rft.volume=61&rft.issue=1&rft.spage=8&rft.epage=12&rft.pages=8-12&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.61.1.8-12.1995&rft_dat=%3Cproquest_pubme%3E4487662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205931881&rft_id=info:pmid/7887629&rfr_iscdi=true