Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200
Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including...
Gespeichert in:
Veröffentlicht in: | Applied and Environmental Microbiology 1995, Vol.61 (1), p.8-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 8 |
container_title | Applied and Environmental Microbiology |
container_volume | 61 |
creator | PICARDAL, F ARNOLD, R. G HUEY, B. B |
description | Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals. |
doi_str_mv | 10.1128/aem.61.1.8-12.1995 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_7887629</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4487662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</originalsourceid><addsrcrecordid>eNpdUctu1DAUtRCoTAd-AAkUIcQugx-JYy9YoKoFpEosStfWHedm4iqxBztp1S1fjqMZDYWVr3UePseXkDeMbhjj6hPguJFswzaqZHzDtK6fkRWjWpW1EPI5WVGqdcl5RV-S85TuKKUVleqMnDVKNZLrFfl92XVop1SErsAhTzH4og0-xAJ8W4C1uJ_yxQbfuskFn5m-iNjOdnL3WLTYwxB26GEBF5cJpwi2H0IMI049eCy2j8VNjw95HAYo9vMUsQPrMJtxSl-RFx0MCV8fzzW5vbr8efGtvP7x9fvFl-vSyqqaSi0Ub7CyUlJlaxDNFjurQGzR2lZopusWW4o1SMarGhvEbSfyKJRtOmwbsSafD777eTtia9HnoIPZRzdCfDQBnPkX8a43u3BvmGx4LbP-41Efw68Z02RGl-xSyWOYU6apHCP__Jq8_494F-boczfDaa0FU4plEj-QbAwp5Q85BWHULNs1ebtGMsOMMoybZbtZ9PZphZPkuM6MfzjikCwMXQRvXTrRRMUlrZYm7w603u36BxfRQBqfvPeX0EEwsIvZ4_ZmSUCZlFpV4g-qeMVs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205931881</pqid></control><display><type>article</type><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B</creator><creatorcontrib>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B ; Indiana University, Bloomington, IN ; Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><description>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/aem.61.1.8-12.1995</identifier><identifier>PMID: 7887629</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>anion ; aniones ; anions ; azote ; Bacteria ; bacteria gram negativa ; bacterie gram negatif ; biodegradacion ; biodegradation ; Biological and medical sciences ; Biology ; Biology of microorganisms of confirmed or potential industrial interest ; Biotechnology ; carbon tetrachloride ; Carbon Tetrachloride - metabolism ; cation ; cationes ; cations ; chemical reactions ; compose organique ; compuestos organicos ; control de la contaminacion ; Electron Transport ; Electrons ; fer ; Fumarates - metabolism ; Fumarates - pharmacology ; Fundamental and applied biological sciences. Psychology ; gram negative bacteria ; Gram-Negative Facultatively Anaerobic Rods - metabolism ; Halogens - metabolism ; hierro ; iron ; lutte antipollution ; Methylamines - metabolism ; Methylamines - pharmacology ; Mission oriented research ; Models, Biological ; nitrate ; nitrates ; nitratos ; nitrite ; nitrites ; nitritos ; nitrogen ; nitrogeno ; organic compounds ; Oxidation-Reduction ; oxidoreductions ; oxigeno ; oxirreducion ; oxydoreduction ; oxygen ; Oxygen - metabolism ; Oxygen - pharmacology ; oxygene ; Physiology and metabolism ; pollution control ; reacciones quimicas ; reaction chimique ; Shewanella putrefaciens ; tetrachlorure de carbone ; tetracloruro de carbono</subject><ispartof>Applied and Environmental Microbiology, 1995, Vol.61 (1), p.8-12</ispartof><rights>1995 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Jan 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC167256/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC167256/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3190,3191,4026,27930,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3426046$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7887629$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>PICARDAL, F</creatorcontrib><creatorcontrib>ARNOLD, R. G</creatorcontrib><creatorcontrib>HUEY, B. B</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><creatorcontrib>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</description><subject>anion</subject><subject>aniones</subject><subject>anions</subject><subject>azote</subject><subject>Bacteria</subject><subject>bacteria gram negativa</subject><subject>bacterie gram negatif</subject><subject>biodegradacion</subject><subject>biodegradation</subject><subject>Biological and medical sciences</subject><subject>Biology</subject><subject>Biology of microorganisms of confirmed or potential industrial interest</subject><subject>Biotechnology</subject><subject>carbon tetrachloride</subject><subject>Carbon Tetrachloride - metabolism</subject><subject>cation</subject><subject>cationes</subject><subject>cations</subject><subject>chemical reactions</subject><subject>compose organique</subject><subject>compuestos organicos</subject><subject>control de la contaminacion</subject><subject>Electron Transport</subject><subject>Electrons</subject><subject>fer</subject><subject>Fumarates - metabolism</subject><subject>Fumarates - pharmacology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gram negative bacteria</subject><subject>Gram-Negative Facultatively Anaerobic Rods - metabolism</subject><subject>Halogens - metabolism</subject><subject>hierro</subject><subject>iron</subject><subject>lutte antipollution</subject><subject>Methylamines - metabolism</subject><subject>Methylamines - pharmacology</subject><subject>Mission oriented research</subject><subject>Models, Biological</subject><subject>nitrate</subject><subject>nitrates</subject><subject>nitratos</subject><subject>nitrite</subject><subject>nitrites</subject><subject>nitritos</subject><subject>nitrogen</subject><subject>nitrogeno</subject><subject>organic compounds</subject><subject>Oxidation-Reduction</subject><subject>oxidoreductions</subject><subject>oxigeno</subject><subject>oxirreducion</subject><subject>oxydoreduction</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen - pharmacology</subject><subject>oxygene</subject><subject>Physiology and metabolism</subject><subject>pollution control</subject><subject>reacciones quimicas</subject><subject>reaction chimique</subject><subject>Shewanella putrefaciens</subject><subject>tetrachlorure de carbone</subject><subject>tetracloruro de carbono</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUctu1DAUtRCoTAd-AAkUIcQugx-JYy9YoKoFpEosStfWHedm4iqxBztp1S1fjqMZDYWVr3UePseXkDeMbhjj6hPguJFswzaqZHzDtK6fkRWjWpW1EPI5WVGqdcl5RV-S85TuKKUVleqMnDVKNZLrFfl92XVop1SErsAhTzH4og0-xAJ8W4C1uJ_yxQbfuskFn5m-iNjOdnL3WLTYwxB26GEBF5cJpwi2H0IMI049eCy2j8VNjw95HAYo9vMUsQPrMJtxSl-RFx0MCV8fzzW5vbr8efGtvP7x9fvFl-vSyqqaSi0Ub7CyUlJlaxDNFjurQGzR2lZopusWW4o1SMarGhvEbSfyKJRtOmwbsSafD777eTtia9HnoIPZRzdCfDQBnPkX8a43u3BvmGx4LbP-41Efw68Z02RGl-xSyWOYU6apHCP__Jq8_494F-boczfDaa0FU4plEj-QbAwp5Q85BWHULNs1ebtGMsOMMoybZbtZ9PZphZPkuM6MfzjikCwMXQRvXTrRRMUlrZYm7w603u36BxfRQBqfvPeX0EEwsIvZ4_ZmSUCZlFpV4g-qeMVs</recordid><startdate>1995</startdate><enddate>1995</enddate><creator>PICARDAL, F</creator><creator>ARNOLD, R. G</creator><creator>HUEY, B. B</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>5PM</scope></search><sort><creationdate>1995</creationdate><title>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</title><author>PICARDAL, F ; ARNOLD, R. G ; HUEY, B. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c644t-93827e4c6608c5a37befc8a3beccd39195ded0e5a61245e7eebf312438c7fed73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>anion</topic><topic>aniones</topic><topic>anions</topic><topic>azote</topic><topic>Bacteria</topic><topic>bacteria gram negativa</topic><topic>bacterie gram negatif</topic><topic>biodegradacion</topic><topic>biodegradation</topic><topic>Biological and medical sciences</topic><topic>Biology</topic><topic>Biology of microorganisms of confirmed or potential industrial interest</topic><topic>Biotechnology</topic><topic>carbon tetrachloride</topic><topic>Carbon Tetrachloride - metabolism</topic><topic>cation</topic><topic>cationes</topic><topic>cations</topic><topic>chemical reactions</topic><topic>compose organique</topic><topic>compuestos organicos</topic><topic>control de la contaminacion</topic><topic>Electron Transport</topic><topic>Electrons</topic><topic>fer</topic><topic>Fumarates - metabolism</topic><topic>Fumarates - pharmacology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gram negative bacteria</topic><topic>Gram-Negative Facultatively Anaerobic Rods - metabolism</topic><topic>Halogens - metabolism</topic><topic>hierro</topic><topic>iron</topic><topic>lutte antipollution</topic><topic>Methylamines - metabolism</topic><topic>Methylamines - pharmacology</topic><topic>Mission oriented research</topic><topic>Models, Biological</topic><topic>nitrate</topic><topic>nitrates</topic><topic>nitratos</topic><topic>nitrite</topic><topic>nitrites</topic><topic>nitritos</topic><topic>nitrogen</topic><topic>nitrogeno</topic><topic>organic compounds</topic><topic>Oxidation-Reduction</topic><topic>oxidoreductions</topic><topic>oxigeno</topic><topic>oxirreducion</topic><topic>oxydoreduction</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen - pharmacology</topic><topic>oxygene</topic><topic>Physiology and metabolism</topic><topic>pollution control</topic><topic>reacciones quimicas</topic><topic>reaction chimique</topic><topic>Shewanella putrefaciens</topic><topic>tetrachlorure de carbone</topic><topic>tetracloruro de carbono</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>PICARDAL, F</creatorcontrib><creatorcontrib>ARNOLD, R. G</creatorcontrib><creatorcontrib>HUEY, B. B</creatorcontrib><creatorcontrib>Indiana University, Bloomington, IN</creatorcontrib><creatorcontrib>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>PICARDAL, F</au><au>ARNOLD, R. G</au><au>HUEY, B. B</au><aucorp>Indiana University, Bloomington, IN</aucorp><aucorp>Atomic-Energy Authority, Inshas (Egypt). Agricultural Dept. of Soils and Water Research</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>1995</date><risdate>1995</risdate><volume>61</volume><issue>1</issue><spage>8</spage><epage>12</epage><pages>8-12</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Shewanella putrefaciens 200 is a nonfermentative bacterium that is capable of dehalogenating tetrachloromethane to chloroform and other, unidentified products under anaerobic conditions. Since S. putrefaciens 200 can respire anaerobically by using a variety of terminal electron acceptors, including NO3-, NO2-, and Fe(III), it provides a unique opportunity to study the competitive effects of different electron acceptors on dehalogenation in a single organism. The results of batch studies showed that dehalogenation of CT by S. putrefaciens 200 was inhibited by O2, 10 mM NO3-, and 3 mM NO2-, but not by 15 mM Fe(III), 15 mM fumarate, or 15 mM trimethylamine oxide. Using measured O2, Fe(III), NO2-, and NO3- reduction rates, we developed a speculative model of electron transport to explain inhibition patterns on the basis of (i) the kinetics of electron transfer at branch points in the electron transport chain, and (ii) possible direct inhibition by nitrogen oxides. In additional experiments in which we used 20 mM lactate, 20 mM glucose, 20 mM glycerol, 20 mM pyruvate, or 20 mM formate as the electron donor, dehalogenation rates were independent of the electron donor used. The results of other experiments suggested that sufficient quantities of endogenous substrates were present to support transformation of tetrachloromethane even in the absence of an exogenous electron donor. Our results should be significant for evaluating (i) the bioremediation potential at sites contaminated with both halogenated organic compounds and nitrogen oxides, and (ii) the bioremediation potential of iron-reducing bacteria at contaminated locations containing significant amounts of iron-bearing minerals.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>7887629</pmid><doi>10.1128/aem.61.1.8-12.1995</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0099-2240 |
ispartof | Applied and Environmental Microbiology, 1995, Vol.61 (1), p.8-12 |
issn | 0099-2240 1098-5336 |
language | eng |
recordid | cdi_pubmed_primary_7887629 |
source | American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection |
subjects | anion aniones anions azote Bacteria bacteria gram negativa bacterie gram negatif biodegradacion biodegradation Biological and medical sciences Biology Biology of microorganisms of confirmed or potential industrial interest Biotechnology carbon tetrachloride Carbon Tetrachloride - metabolism cation cationes cations chemical reactions compose organique compuestos organicos control de la contaminacion Electron Transport Electrons fer Fumarates - metabolism Fumarates - pharmacology Fundamental and applied biological sciences. Psychology gram negative bacteria Gram-Negative Facultatively Anaerobic Rods - metabolism Halogens - metabolism hierro iron lutte antipollution Methylamines - metabolism Methylamines - pharmacology Mission oriented research Models, Biological nitrate nitrates nitratos nitrite nitrites nitritos nitrogen nitrogeno organic compounds Oxidation-Reduction oxidoreductions oxigeno oxirreducion oxydoreduction oxygen Oxygen - metabolism Oxygen - pharmacology oxygene Physiology and metabolism pollution control reacciones quimicas reaction chimique Shewanella putrefaciens tetrachlorure de carbone tetracloruro de carbono |
title | Effects of electron donor and acceptor conditions on reductive dehalogenation of tetrachloromethane by Shewanella putrefaciens 200 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T00%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20electron%20donor%20and%20acceptor%20conditions%20on%20reductive%20dehalogenation%20of%20tetrachloromethane%20by%20Shewanella%20putrefaciens%20200&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=PICARDAL,%20F&rft.aucorp=Indiana%20University,%20Bloomington,%20IN&rft.date=1995&rft.volume=61&rft.issue=1&rft.spage=8&rft.epage=12&rft.pages=8-12&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/aem.61.1.8-12.1995&rft_dat=%3Cproquest_pubme%3E4487662%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205931881&rft_id=info:pmid/7887629&rfr_iscdi=true |