Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA
The crystal structure of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) heterodimer (p66/p51), a 19-base/18-base double-stranded DNA template-primer, and a monoclonal antibody Fab fragment has been determined at 3.0 Å resolution. The four individual subdoma...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1993-07, Vol.90 (13), p.6320-6324 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6324 |
---|---|
container_issue | 13 |
container_start_page | 6320 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 90 |
creator | Jacobo-Molina, Alfredo Ding, Jianping Nanni, Raymond G. Clark, Arthur D. Lu, Xiaode Tantillo, Chris Williams, Roger L. Kamer, Greg Ferris, Andrea L. Clark, Patrick Hizi, Amnon Hughes, Stephen H. Arnold, Edward |
description | The crystal structure of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) heterodimer (p66/p51), a 19-base/18-base double-stranded DNA template-primer, and a monoclonal antibody Fab fragment has been determined at 3.0 Å resolution. The four individual subdomains of RT that make up the polymerase domains of p66 and p51 are named fingers, palm, thumb, and connection [Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. \& Steitz, T. A. (1992) Science 256, 1783-1790]. The overall folding of the subdomains is similar in p66 and p51 but the spatial arrangements of the subdomains are dramatically different. The template-primer has A-form and B-form regions separated by a significant bend (40-45⚬). The most numerous nucleic acid interactions with protein occur primarily along the sugar-phosphate backbone of the DNA and involve amino acid residues of the palm, thumb, and fingers of p66. Highly conserved regions are located in the p66 palm near the polymerase active site. These structural elements, together with two α-helices of the thumb of p66, act as a clamp to position the template-primer relative to the polymerase active site. The 3'-hydroxyl of the primer terminus is close to the catalytically essential Asp-110, Asp-185, and Asp-186 residues at the active site and is in a position for nucleophilic attack on the α-phosphate of an incoming nucleoside triphosphate. The structure of the HIV-1 RT/DNA/Fab complex should aid our understanding of general mechanisms of nucleic acid polymerization. AIDS therapies may be enhanced by a fuller understanding of drug inhibition and resistance emerging from these studies. |
doi_str_mv | 10.1073/pnas.90.13.6320 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmed_primary_7687065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2362383</jstor_id><sourcerecordid>2362383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4330-cd212c5c58aa320bb4781f2a6285e974fbcf6939ea15bcd6547027dae81feb913</originalsourceid><addsrcrecordid>eNp9kctu1DAUhiMEKqWwZgPIQghWmfqWxJbYlCnQShVIdGBrOY7DeJTYwZe2s-cZeAneiifBoxmGy4KVdfx_5z_H_oviIYIzBBtyPFkZZjwXZFYTDG8VhwhyVNaUw9vFIYS4KRnF9G5xL4QVhJBXDB4UB03NGlhXh8W3uV-HKAdwGX1SMXkNXA_O0igtOB_HZF2ne6OMtmoNPhmfAlisJw0Q-KCvtA8aLLy0QXkzRZmruRunQd_oDlybuASnLrWDLrO5tF2-PH13AmQEZAbBj6_fs0dwQ4rGWXC5dNcBvNI2bqD7xZ1eDkE_2J1Hxcc3rxfzs_Li_dvz-clFqSghsFQdRlhVqmJS5te3LW0Y6rGsMas0b2jfqr7mhGuJqlZ1dUWb_COd1JnSLUfkqHi59Z1SO-pO5fFeDmLyZpR-LZw04m_FmqX47K4ErTmGuf35rt27L0mHKEYTlB4GabVLQTQVoxAhmsGn_4Arl7zNTxMYIlwjjnGGjreQ8i4Er_v9HgiKTdpik7bguSBik3buePzn-nt-F2_Wn-10GZQc-pyCMmGPUdZUnLGMvdhhG_9f6u85ok_DEPVNzOST_5IZeLQFViE6vycwqTFhhPwEYfnWmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201261922</pqid></control><display><type>article</type><title>Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jacobo-Molina, Alfredo ; Ding, Jianping ; Nanni, Raymond G. ; Clark, Arthur D. ; Lu, Xiaode ; Tantillo, Chris ; Williams, Roger L. ; Kamer, Greg ; Ferris, Andrea L. ; Clark, Patrick ; Hizi, Amnon ; Hughes, Stephen H. ; Arnold, Edward</creator><creatorcontrib>Jacobo-Molina, Alfredo ; Ding, Jianping ; Nanni, Raymond G. ; Clark, Arthur D. ; Lu, Xiaode ; Tantillo, Chris ; Williams, Roger L. ; Kamer, Greg ; Ferris, Andrea L. ; Clark, Patrick ; Hizi, Amnon ; Hughes, Stephen H. ; Arnold, Edward</creatorcontrib><description>The crystal structure of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) heterodimer (p66/p51), a 19-base/18-base double-stranded DNA template-primer, and a monoclonal antibody Fab fragment has been determined at 3.0 Å resolution. The four individual subdomains of RT that make up the polymerase domains of p66 and p51 are named fingers, palm, thumb, and connection [Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. \& Steitz, T. A. (1992) Science 256, 1783-1790]. The overall folding of the subdomains is similar in p66 and p51 but the spatial arrangements of the subdomains are dramatically different. The template-primer has A-form and B-form regions separated by a significant bend (40-45⚬). The most numerous nucleic acid interactions with protein occur primarily along the sugar-phosphate backbone of the DNA and involve amino acid residues of the palm, thumb, and fingers of p66. Highly conserved regions are located in the p66 palm near the polymerase active site. These structural elements, together with two α-helices of the thumb of p66, act as a clamp to position the template-primer relative to the polymerase active site. The 3'-hydroxyl of the primer terminus is close to the catalytically essential Asp-110, Asp-185, and Asp-186 residues at the active site and is in a position for nucleophilic attack on the α-phosphate of an incoming nucleoside triphosphate. The structure of the HIV-1 RT/DNA/Fab complex should aid our understanding of general mechanisms of nucleic acid polymerization. AIDS therapies may be enhanced by a fuller understanding of drug inhibition and resistance emerging from these studies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.90.13.6320</identifier><identifier>PMID: 7687065</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Active sites ; AIDS/HIV ; Base Sequence ; Biochemistry ; Biological and medical sciences ; Computer Graphics ; Crystallization ; Datasets ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; Electron density ; Enzymes ; Fundamental and applied biological sciences. Psychology ; HIV ; HIV 1 ; HIV Reverse Transcriptase ; Human immunodeficiency virus ; Models, Molecular ; Molecular biophysics ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic acids ; Nucleotides ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Ribonuclease H - metabolism ; RNA-Directed DNA Polymerase - chemistry ; Structural members ; Structure in molecular biology ; Thumb ; Tridimensional structure ; X-Ray Diffraction</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1993-07, Vol.90 (13), p.6320-6324</ispartof><rights>Copyright 1993 The National Academy of Sciences of the United States of America</rights><rights>1993 INIST-CNRS</rights><rights>Copyright National Academy of Sciences Jul 1, 1993</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4330-cd212c5c58aa320bb4781f2a6285e974fbcf6939ea15bcd6547027dae81feb913</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/90/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2362383$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2362383$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27923,27924,53790,53792,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4875988$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7687065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobo-Molina, Alfredo</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Nanni, Raymond G.</creatorcontrib><creatorcontrib>Clark, Arthur D.</creatorcontrib><creatorcontrib>Lu, Xiaode</creatorcontrib><creatorcontrib>Tantillo, Chris</creatorcontrib><creatorcontrib>Williams, Roger L.</creatorcontrib><creatorcontrib>Kamer, Greg</creatorcontrib><creatorcontrib>Ferris, Andrea L.</creatorcontrib><creatorcontrib>Clark, Patrick</creatorcontrib><creatorcontrib>Hizi, Amnon</creatorcontrib><creatorcontrib>Hughes, Stephen H.</creatorcontrib><creatorcontrib>Arnold, Edward</creatorcontrib><title>Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The crystal structure of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) heterodimer (p66/p51), a 19-base/18-base double-stranded DNA template-primer, and a monoclonal antibody Fab fragment has been determined at 3.0 Å resolution. The four individual subdomains of RT that make up the polymerase domains of p66 and p51 are named fingers, palm, thumb, and connection [Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. \& Steitz, T. A. (1992) Science 256, 1783-1790]. The overall folding of the subdomains is similar in p66 and p51 but the spatial arrangements of the subdomains are dramatically different. The template-primer has A-form and B-form regions separated by a significant bend (40-45⚬). The most numerous nucleic acid interactions with protein occur primarily along the sugar-phosphate backbone of the DNA and involve amino acid residues of the palm, thumb, and fingers of p66. Highly conserved regions are located in the p66 palm near the polymerase active site. These structural elements, together with two α-helices of the thumb of p66, act as a clamp to position the template-primer relative to the polymerase active site. The 3'-hydroxyl of the primer terminus is close to the catalytically essential Asp-110, Asp-185, and Asp-186 residues at the active site and is in a position for nucleophilic attack on the α-phosphate of an incoming nucleoside triphosphate. The structure of the HIV-1 RT/DNA/Fab complex should aid our understanding of general mechanisms of nucleic acid polymerization. AIDS therapies may be enhanced by a fuller understanding of drug inhibition and resistance emerging from these studies.</description><subject>Active sites</subject><subject>AIDS/HIV</subject><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Computer Graphics</subject><subject>Crystallization</subject><subject>Datasets</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>Electron density</subject><subject>Enzymes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>HIV</subject><subject>HIV 1</subject><subject>HIV Reverse Transcriptase</subject><subject>Human immunodeficiency virus</subject><subject>Models, Molecular</subject><subject>Molecular biophysics</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>Nucleic acids</subject><subject>Nucleotides</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Protein Structure, Secondary</subject><subject>Ribonuclease H - metabolism</subject><subject>RNA-Directed DNA Polymerase - chemistry</subject><subject>Structural members</subject><subject>Structure in molecular biology</subject><subject>Thumb</subject><subject>Tridimensional structure</subject><subject>X-Ray Diffraction</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kctu1DAUhiMEKqWwZgPIQghWmfqWxJbYlCnQShVIdGBrOY7DeJTYwZe2s-cZeAneiifBoxmGy4KVdfx_5z_H_oviIYIzBBtyPFkZZjwXZFYTDG8VhwhyVNaUw9vFIYS4KRnF9G5xL4QVhJBXDB4UB03NGlhXh8W3uV-HKAdwGX1SMXkNXA_O0igtOB_HZF2ne6OMtmoNPhmfAlisJw0Q-KCvtA8aLLy0QXkzRZmruRunQd_oDlybuASnLrWDLrO5tF2-PH13AmQEZAbBj6_fs0dwQ4rGWXC5dNcBvNI2bqD7xZ1eDkE_2J1Hxcc3rxfzs_Li_dvz-clFqSghsFQdRlhVqmJS5te3LW0Y6rGsMas0b2jfqr7mhGuJqlZ1dUWb_COd1JnSLUfkqHi59Z1SO-pO5fFeDmLyZpR-LZw04m_FmqX47K4ErTmGuf35rt27L0mHKEYTlB4GabVLQTQVoxAhmsGn_4Arl7zNTxMYIlwjjnGGjreQ8i4Er_v9HgiKTdpik7bguSBik3buePzn-nt-F2_Wn-10GZQc-pyCMmGPUdZUnLGMvdhhG_9f6u85ok_DEPVNzOST_5IZeLQFViE6vycwqTFhhPwEYfnWmA</recordid><startdate>19930701</startdate><enddate>19930701</enddate><creator>Jacobo-Molina, Alfredo</creator><creator>Ding, Jianping</creator><creator>Nanni, Raymond G.</creator><creator>Clark, Arthur D.</creator><creator>Lu, Xiaode</creator><creator>Tantillo, Chris</creator><creator>Williams, Roger L.</creator><creator>Kamer, Greg</creator><creator>Ferris, Andrea L.</creator><creator>Clark, Patrick</creator><creator>Hizi, Amnon</creator><creator>Hughes, Stephen H.</creator><creator>Arnold, Edward</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930701</creationdate><title>Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA</title><author>Jacobo-Molina, Alfredo ; Ding, Jianping ; Nanni, Raymond G. ; Clark, Arthur D. ; Lu, Xiaode ; Tantillo, Chris ; Williams, Roger L. ; Kamer, Greg ; Ferris, Andrea L. ; Clark, Patrick ; Hizi, Amnon ; Hughes, Stephen H. ; Arnold, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4330-cd212c5c58aa320bb4781f2a6285e974fbcf6939ea15bcd6547027dae81feb913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Active sites</topic><topic>AIDS/HIV</topic><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Computer Graphics</topic><topic>Crystallization</topic><topic>Datasets</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>Electron density</topic><topic>Enzymes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>HIV</topic><topic>HIV 1</topic><topic>HIV Reverse Transcriptase</topic><topic>Human immunodeficiency virus</topic><topic>Models, Molecular</topic><topic>Molecular biophysics</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>Nucleic acids</topic><topic>Nucleotides</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Protein Structure, Secondary</topic><topic>Ribonuclease H - metabolism</topic><topic>RNA-Directed DNA Polymerase - chemistry</topic><topic>Structural members</topic><topic>Structure in molecular biology</topic><topic>Thumb</topic><topic>Tridimensional structure</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobo-Molina, Alfredo</creatorcontrib><creatorcontrib>Ding, Jianping</creatorcontrib><creatorcontrib>Nanni, Raymond G.</creatorcontrib><creatorcontrib>Clark, Arthur D.</creatorcontrib><creatorcontrib>Lu, Xiaode</creatorcontrib><creatorcontrib>Tantillo, Chris</creatorcontrib><creatorcontrib>Williams, Roger L.</creatorcontrib><creatorcontrib>Kamer, Greg</creatorcontrib><creatorcontrib>Ferris, Andrea L.</creatorcontrib><creatorcontrib>Clark, Patrick</creatorcontrib><creatorcontrib>Hizi, Amnon</creatorcontrib><creatorcontrib>Hughes, Stephen H.</creatorcontrib><creatorcontrib>Arnold, Edward</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobo-Molina, Alfredo</au><au>Ding, Jianping</au><au>Nanni, Raymond G.</au><au>Clark, Arthur D.</au><au>Lu, Xiaode</au><au>Tantillo, Chris</au><au>Williams, Roger L.</au><au>Kamer, Greg</au><au>Ferris, Andrea L.</au><au>Clark, Patrick</au><au>Hizi, Amnon</au><au>Hughes, Stephen H.</au><au>Arnold, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1993-07-01</date><risdate>1993</risdate><volume>90</volume><issue>13</issue><spage>6320</spage><epage>6324</epage><pages>6320-6324</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>The crystal structure of a ternary complex of human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) heterodimer (p66/p51), a 19-base/18-base double-stranded DNA template-primer, and a monoclonal antibody Fab fragment has been determined at 3.0 Å resolution. The four individual subdomains of RT that make up the polymerase domains of p66 and p51 are named fingers, palm, thumb, and connection [Kohlstaedt, L. A., Wang, J., Friedman, J. M., Rice, P. A. \& Steitz, T. A. (1992) Science 256, 1783-1790]. The overall folding of the subdomains is similar in p66 and p51 but the spatial arrangements of the subdomains are dramatically different. The template-primer has A-form and B-form regions separated by a significant bend (40-45⚬). The most numerous nucleic acid interactions with protein occur primarily along the sugar-phosphate backbone of the DNA and involve amino acid residues of the palm, thumb, and fingers of p66. Highly conserved regions are located in the p66 palm near the polymerase active site. These structural elements, together with two α-helices of the thumb of p66, act as a clamp to position the template-primer relative to the polymerase active site. The 3'-hydroxyl of the primer terminus is close to the catalytically essential Asp-110, Asp-185, and Asp-186 residues at the active site and is in a position for nucleophilic attack on the α-phosphate of an incoming nucleoside triphosphate. The structure of the HIV-1 RT/DNA/Fab complex should aid our understanding of general mechanisms of nucleic acid polymerization. AIDS therapies may be enhanced by a fuller understanding of drug inhibition and resistance emerging from these studies.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>7687065</pmid><doi>10.1073/pnas.90.13.6320</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1993-07, Vol.90 (13), p.6320-6324 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmed_primary_7687065 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Active sites AIDS/HIV Base Sequence Biochemistry Biological and medical sciences Computer Graphics Crystallization Datasets Deoxyribonucleic acid DNA DNA - chemistry Electron density Enzymes Fundamental and applied biological sciences. Psychology HIV HIV 1 HIV Reverse Transcriptase Human immunodeficiency virus Models, Molecular Molecular biophysics Molecular Sequence Data Nucleic Acid Conformation Nucleic acids Nucleotides Protein Conformation Protein Folding Protein Structure, Secondary Ribonuclease H - metabolism RNA-Directed DNA Polymerase - chemistry Structural members Structure in molecular biology Thumb Tridimensional structure X-Ray Diffraction |
title | Crystal Structure of Human Immunodeficiency Virus Type 1 Reverse Transcriptase Complexed with Double-Stranded DNA at 3.0 Å Resolution Shows Bent DNA |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T04%3A35%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20Structure%20of%20Human%20Immunodeficiency%20Virus%20Type%201%20Reverse%20Transcriptase%20Complexed%20with%20Double-Stranded%20DNA%20at%203.0%20%E2%84%AB%20Resolution%20Shows%20Bent%20DNA&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jacobo-Molina,%20Alfredo&rft.date=1993-07-01&rft.volume=90&rft.issue=13&rft.spage=6320&rft.epage=6324&rft.pages=6320-6324&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.90.13.6320&rft_dat=%3Cjstor_pubme%3E2362383%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201261922&rft_id=info:pmid/7687065&rft_jstor_id=2362383&rfr_iscdi=true |