Convection-Diffusion as a Model of the Early Current in the Giant Axon

Abstract Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Upsala journal of medical sciences 1972-01, Vol.77 (2), p.77-90
1. Verfasser: Hägglund, Jarl V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 90
container_issue 2
container_start_page 77
container_title Upsala journal of medical sciences
container_volume 77
creator Hägglund, Jarl V.
description Abstract Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the model conductance has been numerically compared with the conductance associated with sodium activation, using Hodgkin & Huxley's equations. The two models show considerable similarities. The sigmoidal increase of the conductance under depolarization and the exponential decay under repolarization is well reproduced by the convection-diffusion model. The time constant of the model conductance is approximately a function of the instantaneous potential, as in the Hodgkin-Huxley theory. The voltage dependence of the time constant is also in agreement with Hodgkin & Huxley. A quantitative comparison has been made, giving the approximate values of the model parameters necessary for compatibility with squidaxon data.
doi_str_mv 10.1517/03009734000000013
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_5070586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>81593224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-110b63e06753d44c87b1819d2a83420021fed8e92baf909e7695491450447d113</originalsourceid><addsrcrecordid>eNp9UE1LwzAYDqLMOf0BHoSevFXzNmnToJcxtylMvOg5pG3COtpkJq26f2_mhiDC3sv78Xzw8iB0CfgGUmC3mGDMGaF4V0CO0DAJQww8Y8douMXjLeEUnXm_CkiGGRmgQYoZTvNsiGYTaz5U2dXWxA-11r0PUyR9JKNnW6kmsjrqliqaStdsoknvnDJdVJuf47yWYRl_WXOOTrRsvLrY9xF6m01fJ4_x4mX-NBkv4pJi6GIAXGRE4YylpKK0zFkBOfAqkTmh4fEEtKpyxZNCao65YhlPKQeaYkpZBUBG6Hrnu3b2vVe-E23tS9U00ijbe5FDykmS0ECEHbF01nuntFi7upVuIwCLbXbiX3ZBc7U374tWVb-KfVgBv9_htdHWtfLTuqYSndw01mknTVl7QQ7Z3_2RL5VsumUpnRIr2zsTcjvw3Dcswor5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>81593224</pqid></control><display><type>article</type><title>Convection-Diffusion as a Model of the Early Current in the Giant Axon</title><source>Taylor &amp; Francis Online</source><source>MEDLINE</source><source>EZB Electronic Journals Library</source><creator>Hägglund, Jarl V.</creator><creatorcontrib>Hägglund, Jarl V.</creatorcontrib><description>Abstract Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the model conductance has been numerically compared with the conductance associated with sodium activation, using Hodgkin &amp; Huxley's equations. The two models show considerable similarities. The sigmoidal increase of the conductance under depolarization and the exponential decay under repolarization is well reproduced by the convection-diffusion model. The time constant of the model conductance is approximately a function of the instantaneous potential, as in the Hodgkin-Huxley theory. The voltage dependence of the time constant is also in agreement with Hodgkin &amp; Huxley. A quantitative comparison has been made, giving the approximate values of the model parameters necessary for compatibility with squidaxon data.</description><identifier>ISSN: 0300-9734</identifier><identifier>EISSN: 2000-1967</identifier><identifier>DOI: 10.1517/03009734000000013</identifier><identifier>PMID: 5070586</identifier><language>eng</language><publisher>England: Informa Healthcare</publisher><subject>Axons - physiology ; Biophysical Phenomena ; Biophysics ; Cell Membrane Permeability ; Computers ; Diffusion ; Electric Conductivity ; Electrophysiology ; Mathematics ; Membrane Potentials ; Membranes, Artificial ; Methods ; Models, Theoretical ; Osmosis ; Space life sciences ; Time Factors</subject><ispartof>Upsala journal of medical sciences, 1972-01, Vol.77 (2), p.77-90</ispartof><rights>1972 Informa Healthcare 1972</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c401t-110b63e06753d44c87b1819d2a83420021fed8e92baf909e7695491450447d113</citedby><cites>FETCH-LOGICAL-c401t-110b63e06753d44c87b1819d2a83420021fed8e92baf909e7695491450447d113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1517/03009734000000013$$EPDF$$P50$$Ginformaworld$$H</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1517/03009734000000013$$EHTML$$P50$$Ginformaworld$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,59646,60435,61220,61401</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/5070586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hägglund, Jarl V.</creatorcontrib><title>Convection-Diffusion as a Model of the Early Current in the Giant Axon</title><title>Upsala journal of medical sciences</title><addtitle>Ups J Med Sci</addtitle><description>Abstract Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the model conductance has been numerically compared with the conductance associated with sodium activation, using Hodgkin &amp; Huxley's equations. The two models show considerable similarities. The sigmoidal increase of the conductance under depolarization and the exponential decay under repolarization is well reproduced by the convection-diffusion model. The time constant of the model conductance is approximately a function of the instantaneous potential, as in the Hodgkin-Huxley theory. The voltage dependence of the time constant is also in agreement with Hodgkin &amp; Huxley. A quantitative comparison has been made, giving the approximate values of the model parameters necessary for compatibility with squidaxon data.</description><subject>Axons - physiology</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell Membrane Permeability</subject><subject>Computers</subject><subject>Diffusion</subject><subject>Electric Conductivity</subject><subject>Electrophysiology</subject><subject>Mathematics</subject><subject>Membrane Potentials</subject><subject>Membranes, Artificial</subject><subject>Methods</subject><subject>Models, Theoretical</subject><subject>Osmosis</subject><subject>Space life sciences</subject><subject>Time Factors</subject><issn>0300-9734</issn><issn>2000-1967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1972</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UE1LwzAYDqLMOf0BHoSevFXzNmnToJcxtylMvOg5pG3COtpkJq26f2_mhiDC3sv78Xzw8iB0CfgGUmC3mGDMGaF4V0CO0DAJQww8Y8douMXjLeEUnXm_CkiGGRmgQYoZTvNsiGYTaz5U2dXWxA-11r0PUyR9JKNnW6kmsjrqliqaStdsoknvnDJdVJuf47yWYRl_WXOOTrRsvLrY9xF6m01fJ4_x4mX-NBkv4pJi6GIAXGRE4YylpKK0zFkBOfAqkTmh4fEEtKpyxZNCao65YhlPKQeaYkpZBUBG6Hrnu3b2vVe-E23tS9U00ijbe5FDykmS0ECEHbF01nuntFi7upVuIwCLbXbiX3ZBc7U374tWVb-KfVgBv9_htdHWtfLTuqYSndw01mknTVl7QQ7Z3_2RL5VsumUpnRIr2zsTcjvw3Dcswor5</recordid><startdate>19720101</startdate><enddate>19720101</enddate><creator>Hägglund, Jarl V.</creator><general>Informa Healthcare</general><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19720101</creationdate><title>Convection-Diffusion as a Model of the Early Current in the Giant Axon</title><author>Hägglund, Jarl V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-110b63e06753d44c87b1819d2a83420021fed8e92baf909e7695491450447d113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1972</creationdate><topic>Axons - physiology</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell Membrane Permeability</topic><topic>Computers</topic><topic>Diffusion</topic><topic>Electric Conductivity</topic><topic>Electrophysiology</topic><topic>Mathematics</topic><topic>Membrane Potentials</topic><topic>Membranes, Artificial</topic><topic>Methods</topic><topic>Models, Theoretical</topic><topic>Osmosis</topic><topic>Space life sciences</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hägglund, Jarl V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Upsala journal of medical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hägglund, Jarl V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convection-Diffusion as a Model of the Early Current in the Giant Axon</atitle><jtitle>Upsala journal of medical sciences</jtitle><addtitle>Ups J Med Sci</addtitle><date>1972-01-01</date><risdate>1972</risdate><volume>77</volume><issue>2</issue><spage>77</spage><epage>90</epage><pages>77-90</pages><issn>0300-9734</issn><eissn>2000-1967</eissn><abstract>Abstract Convection and diffusion in a membrane with a low density of fixed positive charges have been theoretically analysed as a model of the early current in the giant axon. The model can be regarded as a part of Teorell's excitability analogue. The non-linear transient behaviour of the model conductance has been numerically compared with the conductance associated with sodium activation, using Hodgkin &amp; Huxley's equations. The two models show considerable similarities. The sigmoidal increase of the conductance under depolarization and the exponential decay under repolarization is well reproduced by the convection-diffusion model. The time constant of the model conductance is approximately a function of the instantaneous potential, as in the Hodgkin-Huxley theory. The voltage dependence of the time constant is also in agreement with Hodgkin &amp; Huxley. A quantitative comparison has been made, giving the approximate values of the model parameters necessary for compatibility with squidaxon data.</abstract><cop>England</cop><pub>Informa Healthcare</pub><pmid>5070586</pmid><doi>10.1517/03009734000000013</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0300-9734
ispartof Upsala journal of medical sciences, 1972-01, Vol.77 (2), p.77-90
issn 0300-9734
2000-1967
language eng
recordid cdi_pubmed_primary_5070586
source Taylor & Francis Online; MEDLINE; EZB Electronic Journals Library
subjects Axons - physiology
Biophysical Phenomena
Biophysics
Cell Membrane Permeability
Computers
Diffusion
Electric Conductivity
Electrophysiology
Mathematics
Membrane Potentials
Membranes, Artificial
Methods
Models, Theoretical
Osmosis
Space life sciences
Time Factors
title Convection-Diffusion as a Model of the Early Current in the Giant Axon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A42%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convection-Diffusion%20as%20a%20Model%20of%20the%20Early%20Current%20in%20the%20Giant%20Axon&rft.jtitle=Upsala%20journal%20of%20medical%20sciences&rft.au=H%C3%A4gglund,%20Jarl%20V.&rft.date=1972-01-01&rft.volume=77&rft.issue=2&rft.spage=77&rft.epage=90&rft.pages=77-90&rft.issn=0300-9734&rft.eissn=2000-1967&rft_id=info:doi/10.1517/03009734000000013&rft_dat=%3Cproquest_pubme%3E81593224%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=81593224&rft_id=info:pmid/5070586&rfr_iscdi=true