Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production

The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2024-12
Hauptverfasser: Pan, Minmin, Colpo, Rodrigo Amarante, Roussou, Stamatina, Ding, Chang, Lindblad, Peter, Krömer, Jens O
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Environmental science & technology
container_volume
creator Pan, Minmin
Colpo, Rodrigo Amarante
Roussou, Stamatina
Ding, Chang
Lindblad, Peter
Krömer, Jens O
description The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a synthetic community of phototrophs using ( ) and an engineered strain of PCC6803 for acetate production ( ), enabling the production of biohydrogen and fatty acids during nitrogen and carbon dioxide fixation. Elemental balance confirmed carbon capture and nitrogen fixation into the consortium. The strategy of circadian illumination effectively limited oxygen levels in the system, ensuring the activity of the nitrogenase in , despite oxygenic photosynthesis happening in . When infrared light was introduced into the circadian illumination, the production of H (9.70 μmol mg ) and fatty acids (especially C16 and C18) was significantly enhanced. Proteomic analysis indicated acetate exchange and light-dependent regulation of metabolic activities. Infrared illumination significantly stimulated the expression of proteins coding for nitrogen fixation, carbohydrate metabolism, and transporters in , while constant white light led to the most upregulation of photosynthesis-related proteins in . This study demonstrated the successful construction and light regulation of a phototrophic community, enabling H and fatty acid production through carbon and nitrogen fixation.
doi_str_mv 10.1021/acs.est.4c08629
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39668362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146664986</sourcerecordid><originalsourceid>FETCH-LOGICAL-p979-a0f38ec21b0099cba2916e59d99fdce2b9957c37ed8516cd488ebd648564c87b3</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EolCY2ZBHlhQ_EsceoSoPqYgOXZgix_7aGKV2cGyh_nsqUSSme4ejK92D0A0lM0oYvddmnMGYZqUhUjB1gi5oxUhRyYqe_usTdDmOn4QQxok8RxOuhJBcsAv0sfBb5wGi81us8aoLKeicQoph6JzBb87E0Drd43kwuU85Ak7hW0eLF77T3oDFjy50exvDFjxexWCzSS74K3S20f0I18ecovXTYj1_KZbvz6_zh2UxqFoVmmy4BMNoS4hSptVMUQGVskptrAHWKlXVhtdgDzeEsaWU0FpRykqURtYtn6K739khhq98cNHs3Gig77WHkMeG01IIUSopDujtEc3tDmwzRLfTcd_82eA_xKFkAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146664986</pqid></control><display><type>article</type><title>Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production</title><source>American Chemical Society Journals</source><creator>Pan, Minmin ; Colpo, Rodrigo Amarante ; Roussou, Stamatina ; Ding, Chang ; Lindblad, Peter ; Krömer, Jens O</creator><creatorcontrib>Pan, Minmin ; Colpo, Rodrigo Amarante ; Roussou, Stamatina ; Ding, Chang ; Lindblad, Peter ; Krömer, Jens O</creatorcontrib><description>The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a synthetic community of phototrophs using ( ) and an engineered strain of PCC6803 for acetate production ( ), enabling the production of biohydrogen and fatty acids during nitrogen and carbon dioxide fixation. Elemental balance confirmed carbon capture and nitrogen fixation into the consortium. The strategy of circadian illumination effectively limited oxygen levels in the system, ensuring the activity of the nitrogenase in , despite oxygenic photosynthesis happening in . When infrared light was introduced into the circadian illumination, the production of H (9.70 μmol mg ) and fatty acids (especially C16 and C18) was significantly enhanced. Proteomic analysis indicated acetate exchange and light-dependent regulation of metabolic activities. Infrared illumination significantly stimulated the expression of proteins coding for nitrogen fixation, carbohydrate metabolism, and transporters in , while constant white light led to the most upregulation of photosynthesis-related proteins in . This study demonstrated the successful construction and light regulation of a phototrophic community, enabling H and fatty acid production through carbon and nitrogen fixation.</description><identifier>ISSN: 1520-5851</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.4c08629</identifier><identifier>PMID: 39668362</identifier><language>eng</language><publisher>United States</publisher><ispartof>Environmental science &amp; technology, 2024-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7256-0275 ; 0000-0001-5550-4685 ; 0000-0001-5366-8387 ; 0000-0001-5006-0819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39668362$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Minmin</creatorcontrib><creatorcontrib>Colpo, Rodrigo Amarante</creatorcontrib><creatorcontrib>Roussou, Stamatina</creatorcontrib><creatorcontrib>Ding, Chang</creatorcontrib><creatorcontrib>Lindblad, Peter</creatorcontrib><creatorcontrib>Krömer, Jens O</creatorcontrib><title>Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production</title><title>Environmental science &amp; technology</title><addtitle>Environ Sci Technol</addtitle><description>The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a synthetic community of phototrophs using ( ) and an engineered strain of PCC6803 for acetate production ( ), enabling the production of biohydrogen and fatty acids during nitrogen and carbon dioxide fixation. Elemental balance confirmed carbon capture and nitrogen fixation into the consortium. The strategy of circadian illumination effectively limited oxygen levels in the system, ensuring the activity of the nitrogenase in , despite oxygenic photosynthesis happening in . When infrared light was introduced into the circadian illumination, the production of H (9.70 μmol mg ) and fatty acids (especially C16 and C18) was significantly enhanced. Proteomic analysis indicated acetate exchange and light-dependent regulation of metabolic activities. Infrared illumination significantly stimulated the expression of proteins coding for nitrogen fixation, carbohydrate metabolism, and transporters in , while constant white light led to the most upregulation of photosynthesis-related proteins in . This study demonstrated the successful construction and light regulation of a phototrophic community, enabling H and fatty acid production through carbon and nitrogen fixation.</description><issn>1520-5851</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkDtPwzAYRS0EolCY2ZBHlhQ_EsceoSoPqYgOXZgix_7aGKV2cGyh_nsqUSSme4ejK92D0A0lM0oYvddmnMGYZqUhUjB1gi5oxUhRyYqe_usTdDmOn4QQxok8RxOuhJBcsAv0sfBb5wGi81us8aoLKeicQoph6JzBb87E0Drd43kwuU85Ak7hW0eLF77T3oDFjy50exvDFjxexWCzSS74K3S20f0I18ecovXTYj1_KZbvz6_zh2UxqFoVmmy4BMNoS4hSptVMUQGVskptrAHWKlXVhtdgDzeEsaWU0FpRykqURtYtn6K739khhq98cNHs3Gig77WHkMeG01IIUSopDujtEc3tDmwzRLfTcd_82eA_xKFkAw</recordid><startdate>20241212</startdate><enddate>20241212</enddate><creator>Pan, Minmin</creator><creator>Colpo, Rodrigo Amarante</creator><creator>Roussou, Stamatina</creator><creator>Ding, Chang</creator><creator>Lindblad, Peter</creator><creator>Krömer, Jens O</creator><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7256-0275</orcidid><orcidid>https://orcid.org/0000-0001-5550-4685</orcidid><orcidid>https://orcid.org/0000-0001-5366-8387</orcidid><orcidid>https://orcid.org/0000-0001-5006-0819</orcidid></search><sort><creationdate>20241212</creationdate><title>Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production</title><author>Pan, Minmin ; Colpo, Rodrigo Amarante ; Roussou, Stamatina ; Ding, Chang ; Lindblad, Peter ; Krömer, Jens O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p979-a0f38ec21b0099cba2916e59d99fdce2b9957c37ed8516cd488ebd648564c87b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Minmin</creatorcontrib><creatorcontrib>Colpo, Rodrigo Amarante</creatorcontrib><creatorcontrib>Roussou, Stamatina</creatorcontrib><creatorcontrib>Ding, Chang</creatorcontrib><creatorcontrib>Lindblad, Peter</creatorcontrib><creatorcontrib>Krömer, Jens O</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Minmin</au><au>Colpo, Rodrigo Amarante</au><au>Roussou, Stamatina</au><au>Ding, Chang</au><au>Lindblad, Peter</au><au>Krömer, Jens O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ Sci Technol</addtitle><date>2024-12-12</date><risdate>2024</risdate><issn>1520-5851</issn><eissn>1520-5851</eissn><abstract>The application of synthetic phototrophic microbial consortia holds promise for sustainable bioenergy production. Nevertheless, strategies for the efficient construction and regulation of such consortia remain challenging. Applying tools of genetic engineering, this study successfully constructed a synthetic community of phototrophs using ( ) and an engineered strain of PCC6803 for acetate production ( ), enabling the production of biohydrogen and fatty acids during nitrogen and carbon dioxide fixation. Elemental balance confirmed carbon capture and nitrogen fixation into the consortium. The strategy of circadian illumination effectively limited oxygen levels in the system, ensuring the activity of the nitrogenase in , despite oxygenic photosynthesis happening in . When infrared light was introduced into the circadian illumination, the production of H (9.70 μmol mg ) and fatty acids (especially C16 and C18) was significantly enhanced. Proteomic analysis indicated acetate exchange and light-dependent regulation of metabolic activities. Infrared illumination significantly stimulated the expression of proteins coding for nitrogen fixation, carbohydrate metabolism, and transporters in , while constant white light led to the most upregulation of photosynthesis-related proteins in . This study demonstrated the successful construction and light regulation of a phototrophic community, enabling H and fatty acid production through carbon and nitrogen fixation.</abstract><cop>United States</cop><pmid>39668362</pmid><doi>10.1021/acs.est.4c08629</doi><orcidid>https://orcid.org/0000-0001-7256-0275</orcidid><orcidid>https://orcid.org/0000-0001-5550-4685</orcidid><orcidid>https://orcid.org/0000-0001-5366-8387</orcidid><orcidid>https://orcid.org/0000-0001-5006-0819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-5851
ispartof Environmental science & technology, 2024-12
issn 1520-5851
1520-5851
language eng
recordid cdi_pubmed_primary_39668362
source American Chemical Society Journals
title Engineering a Photoautotrophic Microbial Coculture toward Enhanced Biohydrogen Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T15%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20a%20Photoautotrophic%20Microbial%20Coculture%20toward%20Enhanced%20Biohydrogen%20Production&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Pan,%20Minmin&rft.date=2024-12-12&rft.issn=1520-5851&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.4c08629&rft_dat=%3Cproquest_pubme%3E3146664986%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146664986&rft_id=info:pmid/39668362&rfr_iscdi=true