Transposable element exonization generates a reservoir of evolving and functional protein isoforms

Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2024-12
Hauptverfasser: Arribas, Yago A, Baudon, Blandine, Rotival, Maxime, Suárez, Guadalupe, Bonté, Pierre-Emmanuel, Casas, Vanessa, Roubert, Apollinaire, Klein, Paul, Bonnin, Elisa, Mchich, Basma, Legoix, Patricia, Baulande, Sylvain, Sadacca, Benjamin, Diharce, Julien, Waterfall, Joshua J, Etchebest, Catherine, Carrascal, Montserrat, Goudot, Christel, Quintana-Murci, Lluís, Burbage, Marianne, Merlotti, Antonela, Amigorena, Sebastian
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Cell
container_volume
creator Arribas, Yago A
Baudon, Blandine
Rotival, Maxime
Suárez, Guadalupe
Bonté, Pierre-Emmanuel
Casas, Vanessa
Roubert, Apollinaire
Klein, Paul
Bonnin, Elisa
Mchich, Basma
Legoix, Patricia
Baulande, Sylvain
Sadacca, Benjamin
Diharce, Julien
Waterfall, Joshua J
Etchebest, Catherine
Carrascal, Montserrat
Goudot, Christel
Quintana-Murci, Lluís
Burbage, Marianne
Merlotti, Antonela
Amigorena, Sebastian
description Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39667937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39667937</sourcerecordid><originalsourceid>FETCH-pubmed_primary_396679373</originalsourceid><addsrcrecordid>eNqFzk0KwkAMQOFBEOvfFSQXEKq11q5F8QDuJbWpjEyTkrRFPb0Iunb1Nt_iDdx4FefZcrPK1pGbmN3jON6laTpyUZJvt1meZGNXnBXZGjEsAgEFqolboIewf2HrheFGTIotGSAoGWkvXkEqoF5C7_kGyCVUHV8_HAM0Ki15Bm9SidY2c8MKg9H826lbHA_n_WnZdEVN5aVRX6M-L7-p5C94A5mpRNY</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transposable element exonization generates a reservoir of evolving and functional protein isoforms</title><source>Access via ScienceDirect (Elsevier)</source><creator>Arribas, Yago A ; Baudon, Blandine ; Rotival, Maxime ; Suárez, Guadalupe ; Bonté, Pierre-Emmanuel ; Casas, Vanessa ; Roubert, Apollinaire ; Klein, Paul ; Bonnin, Elisa ; Mchich, Basma ; Legoix, Patricia ; Baulande, Sylvain ; Sadacca, Benjamin ; Diharce, Julien ; Waterfall, Joshua J ; Etchebest, Catherine ; Carrascal, Montserrat ; Goudot, Christel ; Quintana-Murci, Lluís ; Burbage, Marianne ; Merlotti, Antonela ; Amigorena, Sebastian</creator><creatorcontrib>Arribas, Yago A ; Baudon, Blandine ; Rotival, Maxime ; Suárez, Guadalupe ; Bonté, Pierre-Emmanuel ; Casas, Vanessa ; Roubert, Apollinaire ; Klein, Paul ; Bonnin, Elisa ; Mchich, Basma ; Legoix, Patricia ; Baulande, Sylvain ; Sadacca, Benjamin ; Diharce, Julien ; Waterfall, Joshua J ; Etchebest, Catherine ; Carrascal, Montserrat ; Goudot, Christel ; Quintana-Murci, Lluís ; Burbage, Marianne ; Merlotti, Antonela ; Amigorena, Sebastian</creatorcontrib><description>Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.</description><identifier>EISSN: 1097-4172</identifier><identifier>PMID: 39667937</identifier><language>eng</language><publisher>United States</publisher><ispartof>Cell, 2024-12</ispartof><rights>Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39667937$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arribas, Yago A</creatorcontrib><creatorcontrib>Baudon, Blandine</creatorcontrib><creatorcontrib>Rotival, Maxime</creatorcontrib><creatorcontrib>Suárez, Guadalupe</creatorcontrib><creatorcontrib>Bonté, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Casas, Vanessa</creatorcontrib><creatorcontrib>Roubert, Apollinaire</creatorcontrib><creatorcontrib>Klein, Paul</creatorcontrib><creatorcontrib>Bonnin, Elisa</creatorcontrib><creatorcontrib>Mchich, Basma</creatorcontrib><creatorcontrib>Legoix, Patricia</creatorcontrib><creatorcontrib>Baulande, Sylvain</creatorcontrib><creatorcontrib>Sadacca, Benjamin</creatorcontrib><creatorcontrib>Diharce, Julien</creatorcontrib><creatorcontrib>Waterfall, Joshua J</creatorcontrib><creatorcontrib>Etchebest, Catherine</creatorcontrib><creatorcontrib>Carrascal, Montserrat</creatorcontrib><creatorcontrib>Goudot, Christel</creatorcontrib><creatorcontrib>Quintana-Murci, Lluís</creatorcontrib><creatorcontrib>Burbage, Marianne</creatorcontrib><creatorcontrib>Merlotti, Antonela</creatorcontrib><creatorcontrib>Amigorena, Sebastian</creatorcontrib><title>Transposable element exonization generates a reservoir of evolving and functional protein isoforms</title><title>Cell</title><addtitle>Cell</addtitle><description>Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.</description><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFzk0KwkAMQOFBEOvfFSQXEKq11q5F8QDuJbWpjEyTkrRFPb0Iunb1Nt_iDdx4FefZcrPK1pGbmN3jON6laTpyUZJvt1meZGNXnBXZGjEsAgEFqolboIewf2HrheFGTIotGSAoGWkvXkEqoF5C7_kGyCVUHV8_HAM0Ki15Bm9SidY2c8MKg9H826lbHA_n_WnZdEVN5aVRX6M-L7-p5C94A5mpRNY</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Arribas, Yago A</creator><creator>Baudon, Blandine</creator><creator>Rotival, Maxime</creator><creator>Suárez, Guadalupe</creator><creator>Bonté, Pierre-Emmanuel</creator><creator>Casas, Vanessa</creator><creator>Roubert, Apollinaire</creator><creator>Klein, Paul</creator><creator>Bonnin, Elisa</creator><creator>Mchich, Basma</creator><creator>Legoix, Patricia</creator><creator>Baulande, Sylvain</creator><creator>Sadacca, Benjamin</creator><creator>Diharce, Julien</creator><creator>Waterfall, Joshua J</creator><creator>Etchebest, Catherine</creator><creator>Carrascal, Montserrat</creator><creator>Goudot, Christel</creator><creator>Quintana-Murci, Lluís</creator><creator>Burbage, Marianne</creator><creator>Merlotti, Antonela</creator><creator>Amigorena, Sebastian</creator><scope>NPM</scope></search><sort><creationdate>20241209</creationdate><title>Transposable element exonization generates a reservoir of evolving and functional protein isoforms</title><author>Arribas, Yago A ; Baudon, Blandine ; Rotival, Maxime ; Suárez, Guadalupe ; Bonté, Pierre-Emmanuel ; Casas, Vanessa ; Roubert, Apollinaire ; Klein, Paul ; Bonnin, Elisa ; Mchich, Basma ; Legoix, Patricia ; Baulande, Sylvain ; Sadacca, Benjamin ; Diharce, Julien ; Waterfall, Joshua J ; Etchebest, Catherine ; Carrascal, Montserrat ; Goudot, Christel ; Quintana-Murci, Lluís ; Burbage, Marianne ; Merlotti, Antonela ; Amigorena, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_396679373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arribas, Yago A</creatorcontrib><creatorcontrib>Baudon, Blandine</creatorcontrib><creatorcontrib>Rotival, Maxime</creatorcontrib><creatorcontrib>Suárez, Guadalupe</creatorcontrib><creatorcontrib>Bonté, Pierre-Emmanuel</creatorcontrib><creatorcontrib>Casas, Vanessa</creatorcontrib><creatorcontrib>Roubert, Apollinaire</creatorcontrib><creatorcontrib>Klein, Paul</creatorcontrib><creatorcontrib>Bonnin, Elisa</creatorcontrib><creatorcontrib>Mchich, Basma</creatorcontrib><creatorcontrib>Legoix, Patricia</creatorcontrib><creatorcontrib>Baulande, Sylvain</creatorcontrib><creatorcontrib>Sadacca, Benjamin</creatorcontrib><creatorcontrib>Diharce, Julien</creatorcontrib><creatorcontrib>Waterfall, Joshua J</creatorcontrib><creatorcontrib>Etchebest, Catherine</creatorcontrib><creatorcontrib>Carrascal, Montserrat</creatorcontrib><creatorcontrib>Goudot, Christel</creatorcontrib><creatorcontrib>Quintana-Murci, Lluís</creatorcontrib><creatorcontrib>Burbage, Marianne</creatorcontrib><creatorcontrib>Merlotti, Antonela</creatorcontrib><creatorcontrib>Amigorena, Sebastian</creatorcontrib><collection>PubMed</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arribas, Yago A</au><au>Baudon, Blandine</au><au>Rotival, Maxime</au><au>Suárez, Guadalupe</au><au>Bonté, Pierre-Emmanuel</au><au>Casas, Vanessa</au><au>Roubert, Apollinaire</au><au>Klein, Paul</au><au>Bonnin, Elisa</au><au>Mchich, Basma</au><au>Legoix, Patricia</au><au>Baulande, Sylvain</au><au>Sadacca, Benjamin</au><au>Diharce, Julien</au><au>Waterfall, Joshua J</au><au>Etchebest, Catherine</au><au>Carrascal, Montserrat</au><au>Goudot, Christel</au><au>Quintana-Murci, Lluís</au><au>Burbage, Marianne</au><au>Merlotti, Antonela</au><au>Amigorena, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transposable element exonization generates a reservoir of evolving and functional protein isoforms</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2024-12-09</date><risdate>2024</risdate><eissn>1097-4172</eissn><abstract>Alternative splicing enhances protein diversity in different ways, including through exonization of transposable elements (TEs). Recent transcriptomic analyses identified thousands of unannotated spliced transcripts with exonizing TEs, but their contribution to the proteome and biological relevance remains unclear. Here, we use transcriptome assembly, ribosome profiling, and proteomics to describe a population of 1,227 unannotated TE exonizing isoforms generated by mRNA splicing and recurrent in human populations. Despite being shorter and lowly expressed, these isoforms are shared between individuals and efficiently translated. Functional analyses show stable expression, specific cellular localization, and, in some cases, modified functions. Exonized TEs are rich in ancient genes, whereas the involved splice sites are recent and can be evolutionarily conserved. In addition, exonized TEs contribute to the secondary structure of the emerging isoforms, supporting their functional relevance. We conclude that TE-spliced isoforms represent a diversity reservoir of functional proteins on which natural selection can act.</abstract><cop>United States</cop><pmid>39667937</pmid></addata></record>
fulltext fulltext
identifier EISSN: 1097-4172
ispartof Cell, 2024-12
issn 1097-4172
language eng
recordid cdi_pubmed_primary_39667937
source Access via ScienceDirect (Elsevier)
title Transposable element exonization generates a reservoir of evolving and functional protein isoforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transposable%20element%20exonization%20generates%20a%20reservoir%20of%20evolving%20and%20functional%20protein%20isoforms&rft.jtitle=Cell&rft.au=Arribas,%20Yago%20A&rft.date=2024-12-09&rft.eissn=1097-4172&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39667937%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39667937&rfr_iscdi=true