Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing
The fibroblast-myofibroblast transition marked by extracellular matrix (ECM) secretion and contraction of actomyosin-based stress fibers, plays central roles in the wound healing process. This work aims to utilize the cell membrane-based nanoplatform to improve the outcomes of dysregulated wound hea...
Gespeichert in:
Veröffentlicht in: | Biofabrication 2024-12, Vol.17 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Biofabrication |
container_volume | 17 |
creator | Jia, Qi Ding, Yijuan Su, Ziwen Chen, Heying Ye, Jialing Xie, Dafeng Wu, Yubo He, Haiyan Peng, Yanlin Ni, Yilu |
description | The fibroblast-myofibroblast transition marked by extracellular matrix (ECM) secretion and contraction of actomyosin-based stress fibers, plays central roles in the wound healing process. This work aims to utilize the cell membrane-based nanoplatform to improve the outcomes of dysregulated wound healing. The cell membranes of myofibroblasts isolated from mouse skin are used as the camouflage for gold nanoparticles loaded with IL-4 cytokine. The membrane-modified nanoparticles show effective in situ clearance of bacterial infection, and act as the activator in IL-4Rα signaling pathway to induce pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype. Thus, the poor bacteria-clearance and non-stop inflammation in refractory wounds are improved and accelerated. Furthermore, the nanoplatform releases myofibroblast membranes to propel primitive fibroblasts toward the fibroblast-myofibroblast transition in an epigenetic manner. Matrix-production, vascularization, and epithelial regeneration are then initiated, leading to the satisfactory wound closure. Our study devises a new strategy for activating fibroblasts into myofibroblasts under prolonged and continuous exposure to the fibrotic environment, and develops a promising biomimetic nanoplatform for effective treatment of dysregulated chronic wound healing. |
doi_str_mv | 10.1088/1758-5090/ad9cc4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_pubmed_primary_39657324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3146623825</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1244-6474f08e366ad88dcd655e580a9ca74024ebb3d2272037e65ee37d23361c0173</originalsourceid><addsrcrecordid>eNptkTtPwzAUhS0EolDYmZAnxECo33FGVPGSKrF0txzbKS5JHOIE1H-Pq5ayMN2HPl2dcy4AVxjdYyTlDOdcZhwVaKZtYQw7AmeH1fGhl2QCzmNcIyQ4F_gUTGgheE4JOwP93NU1bFxT9rp1mdFNGKtar5yFrW5Dp_vBm9pFqM3gv_TgYOXLPpS1jkPWbMLfBId0IfrBhxYOAXZ9aELC44dv4XcYWwvfna59u7oAJ5Wuo7vc1ylYPj0u5y_Z4u35df6wyDwmjGWC5axC0lEhtJXSGpvUOy6RLozOGSLMlSW1hOQE0dwJ7hzNLaFUYINwTqfgdnc2KfkcXRxU46NJbpPPMEZFMROCUEl4Qq_36Fg2zqqu943uN-o3pgTc7QAfOrUOY98m4Qojtf2C2sastpGr3RcSfvMPXlaJVFghzBEVqrMV_QEP64cE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146623825</pqid></control><display><type>article</type><title>Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing</title><source>Institute of Physics Journals</source><source>MEDLINE</source><creator>Jia, Qi ; Ding, Yijuan ; Su, Ziwen ; Chen, Heying ; Ye, Jialing ; Xie, Dafeng ; Wu, Yubo ; He, Haiyan ; Peng, Yanlin ; Ni, Yilu</creator><creatorcontrib>Jia, Qi ; Ding, Yijuan ; Su, Ziwen ; Chen, Heying ; Ye, Jialing ; Xie, Dafeng ; Wu, Yubo ; He, Haiyan ; Peng, Yanlin ; Ni, Yilu</creatorcontrib><description>The fibroblast-myofibroblast transition marked by extracellular matrix (ECM) secretion and contraction of actomyosin-based stress fibers, plays central roles in the wound healing process. This work aims to utilize the cell membrane-based nanoplatform to improve the outcomes of dysregulated wound healing. The cell membranes of myofibroblasts isolated from mouse skin are used as the camouflage for gold nanoparticles loaded with IL-4 cytokine. The membrane-modified nanoparticles show effective in situ clearance of bacterial infection, and act as the activator in IL-4Rα signaling pathway to induce pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype. Thus, the poor bacteria-clearance and non-stop inflammation in refractory wounds are improved and accelerated. Furthermore, the nanoplatform releases myofibroblast membranes to propel primitive fibroblasts toward the fibroblast-myofibroblast transition in an epigenetic manner. Matrix-production, vascularization, and epithelial regeneration are then initiated, leading to the satisfactory wound closure. Our study devises a new strategy for activating fibroblasts into myofibroblasts under prolonged and continuous exposure to the fibrotic environment, and develops a promising biomimetic nanoplatform for effective treatment of dysregulated chronic wound healing.</description><identifier>ISSN: 1758-5082</identifier><identifier>ISSN: 1758-5090</identifier><identifier>EISSN: 1758-5090</identifier><identifier>DOI: 10.1088/1758-5090/ad9cc4</identifier><identifier>PMID: 39657324</identifier><identifier>CODEN: BIOFCK</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Animals ; cell membrane ; Cell Membrane - drug effects ; Cell Membrane - metabolism ; epigenetic modification ; fibroblast-myofibroblast transition ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - metabolism ; Gold - chemistry ; Gold - pharmacology ; Interleukin-4 - metabolism ; Macrophages - cytology ; Macrophages - drug effects ; Macrophages - metabolism ; Metal Nanoparticles - chemistry ; Mice ; Myofibroblasts - cytology ; Myofibroblasts - drug effects ; Myofibroblasts - metabolism ; proliferation phase ; Skin - cytology ; Skin - drug effects ; wound healing ; Wound Healing - drug effects</subject><ispartof>Biofabrication, 2024-12, Vol.17 (1)</ispartof><rights>2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0402-4734 ; 0009-0004-3232-156X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1758-5090/ad9cc4/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846,53893</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39657324$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Ding, Yijuan</creatorcontrib><creatorcontrib>Su, Ziwen</creatorcontrib><creatorcontrib>Chen, Heying</creatorcontrib><creatorcontrib>Ye, Jialing</creatorcontrib><creatorcontrib>Xie, Dafeng</creatorcontrib><creatorcontrib>Wu, Yubo</creatorcontrib><creatorcontrib>He, Haiyan</creatorcontrib><creatorcontrib>Peng, Yanlin</creatorcontrib><creatorcontrib>Ni, Yilu</creatorcontrib><title>Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing</title><title>Biofabrication</title><addtitle>BF</addtitle><addtitle>Biofabrication</addtitle><description>The fibroblast-myofibroblast transition marked by extracellular matrix (ECM) secretion and contraction of actomyosin-based stress fibers, plays central roles in the wound healing process. This work aims to utilize the cell membrane-based nanoplatform to improve the outcomes of dysregulated wound healing. The cell membranes of myofibroblasts isolated from mouse skin are used as the camouflage for gold nanoparticles loaded with IL-4 cytokine. The membrane-modified nanoparticles show effective in situ clearance of bacterial infection, and act as the activator in IL-4Rα signaling pathway to induce pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype. Thus, the poor bacteria-clearance and non-stop inflammation in refractory wounds are improved and accelerated. Furthermore, the nanoplatform releases myofibroblast membranes to propel primitive fibroblasts toward the fibroblast-myofibroblast transition in an epigenetic manner. Matrix-production, vascularization, and epithelial regeneration are then initiated, leading to the satisfactory wound closure. Our study devises a new strategy for activating fibroblasts into myofibroblasts under prolonged and continuous exposure to the fibrotic environment, and develops a promising biomimetic nanoplatform for effective treatment of dysregulated chronic wound healing.</description><subject>Animals</subject><subject>cell membrane</subject><subject>Cell Membrane - drug effects</subject><subject>Cell Membrane - metabolism</subject><subject>epigenetic modification</subject><subject>fibroblast-myofibroblast transition</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - metabolism</subject><subject>Gold - chemistry</subject><subject>Gold - pharmacology</subject><subject>Interleukin-4 - metabolism</subject><subject>Macrophages - cytology</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - metabolism</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Mice</subject><subject>Myofibroblasts - cytology</subject><subject>Myofibroblasts - drug effects</subject><subject>Myofibroblasts - metabolism</subject><subject>proliferation phase</subject><subject>Skin - cytology</subject><subject>Skin - drug effects</subject><subject>wound healing</subject><subject>Wound Healing - drug effects</subject><issn>1758-5082</issn><issn>1758-5090</issn><issn>1758-5090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkTtPwzAUhS0EolDYmZAnxECo33FGVPGSKrF0txzbKS5JHOIE1H-Pq5ayMN2HPl2dcy4AVxjdYyTlDOdcZhwVaKZtYQw7AmeH1fGhl2QCzmNcIyQ4F_gUTGgheE4JOwP93NU1bFxT9rp1mdFNGKtar5yFrW5Dp_vBm9pFqM3gv_TgYOXLPpS1jkPWbMLfBId0IfrBhxYOAXZ9aELC44dv4XcYWwvfna59u7oAJ5Wuo7vc1ylYPj0u5y_Z4u35df6wyDwmjGWC5axC0lEhtJXSGpvUOy6RLozOGSLMlSW1hOQE0dwJ7hzNLaFUYINwTqfgdnc2KfkcXRxU46NJbpPPMEZFMROCUEl4Qq_36Fg2zqqu943uN-o3pgTc7QAfOrUOY98m4Qojtf2C2sastpGr3RcSfvMPXlaJVFghzBEVqrMV_QEP64cE</recordid><startdate>20241223</startdate><enddate>20241223</enddate><creator>Jia, Qi</creator><creator>Ding, Yijuan</creator><creator>Su, Ziwen</creator><creator>Chen, Heying</creator><creator>Ye, Jialing</creator><creator>Xie, Dafeng</creator><creator>Wu, Yubo</creator><creator>He, Haiyan</creator><creator>Peng, Yanlin</creator><creator>Ni, Yilu</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0402-4734</orcidid><orcidid>https://orcid.org/0009-0004-3232-156X</orcidid></search><sort><creationdate>20241223</creationdate><title>Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing</title><author>Jia, Qi ; Ding, Yijuan ; Su, Ziwen ; Chen, Heying ; Ye, Jialing ; Xie, Dafeng ; Wu, Yubo ; He, Haiyan ; Peng, Yanlin ; Ni, Yilu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1244-6474f08e366ad88dcd655e580a9ca74024ebb3d2272037e65ee37d23361c0173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Animals</topic><topic>cell membrane</topic><topic>Cell Membrane - drug effects</topic><topic>Cell Membrane - metabolism</topic><topic>epigenetic modification</topic><topic>fibroblast-myofibroblast transition</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - metabolism</topic><topic>Gold - chemistry</topic><topic>Gold - pharmacology</topic><topic>Interleukin-4 - metabolism</topic><topic>Macrophages - cytology</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - metabolism</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Mice</topic><topic>Myofibroblasts - cytology</topic><topic>Myofibroblasts - drug effects</topic><topic>Myofibroblasts - metabolism</topic><topic>proliferation phase</topic><topic>Skin - cytology</topic><topic>Skin - drug effects</topic><topic>wound healing</topic><topic>Wound Healing - drug effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jia, Qi</creatorcontrib><creatorcontrib>Ding, Yijuan</creatorcontrib><creatorcontrib>Su, Ziwen</creatorcontrib><creatorcontrib>Chen, Heying</creatorcontrib><creatorcontrib>Ye, Jialing</creatorcontrib><creatorcontrib>Xie, Dafeng</creatorcontrib><creatorcontrib>Wu, Yubo</creatorcontrib><creatorcontrib>He, Haiyan</creatorcontrib><creatorcontrib>Peng, Yanlin</creatorcontrib><creatorcontrib>Ni, Yilu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Biofabrication</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jia, Qi</au><au>Ding, Yijuan</au><au>Su, Ziwen</au><au>Chen, Heying</au><au>Ye, Jialing</au><au>Xie, Dafeng</au><au>Wu, Yubo</au><au>He, Haiyan</au><au>Peng, Yanlin</au><au>Ni, Yilu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing</atitle><jtitle>Biofabrication</jtitle><stitle>BF</stitle><addtitle>Biofabrication</addtitle><date>2024-12-23</date><risdate>2024</risdate><volume>17</volume><issue>1</issue><issn>1758-5082</issn><issn>1758-5090</issn><eissn>1758-5090</eissn><coden>BIOFCK</coden><abstract>The fibroblast-myofibroblast transition marked by extracellular matrix (ECM) secretion and contraction of actomyosin-based stress fibers, plays central roles in the wound healing process. This work aims to utilize the cell membrane-based nanoplatform to improve the outcomes of dysregulated wound healing. The cell membranes of myofibroblasts isolated from mouse skin are used as the camouflage for gold nanoparticles loaded with IL-4 cytokine. The membrane-modified nanoparticles show effective in situ clearance of bacterial infection, and act as the activator in IL-4Rα signaling pathway to induce pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype. Thus, the poor bacteria-clearance and non-stop inflammation in refractory wounds are improved and accelerated. Furthermore, the nanoplatform releases myofibroblast membranes to propel primitive fibroblasts toward the fibroblast-myofibroblast transition in an epigenetic manner. Matrix-production, vascularization, and epithelial regeneration are then initiated, leading to the satisfactory wound closure. Our study devises a new strategy for activating fibroblasts into myofibroblasts under prolonged and continuous exposure to the fibrotic environment, and develops a promising biomimetic nanoplatform for effective treatment of dysregulated chronic wound healing.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39657324</pmid><doi>10.1088/1758-5090/ad9cc4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0402-4734</orcidid><orcidid>https://orcid.org/0009-0004-3232-156X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1758-5082 |
ispartof | Biofabrication, 2024-12, Vol.17 (1) |
issn | 1758-5082 1758-5090 1758-5090 |
language | eng |
recordid | cdi_pubmed_primary_39657324 |
source | Institute of Physics Journals; MEDLINE |
subjects | Animals cell membrane Cell Membrane - drug effects Cell Membrane - metabolism epigenetic modification fibroblast-myofibroblast transition Fibroblasts - cytology Fibroblasts - drug effects Fibroblasts - metabolism Gold - chemistry Gold - pharmacology Interleukin-4 - metabolism Macrophages - cytology Macrophages - drug effects Macrophages - metabolism Metal Nanoparticles - chemistry Mice Myofibroblasts - cytology Myofibroblasts - drug effects Myofibroblasts - metabolism proliferation phase Skin - cytology Skin - drug effects wound healing Wound Healing - drug effects |
title | Cell membrane-camouflaged nanoparticles activate fibroblast-myofibroblast transition to promote skin wound healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T20%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20membrane-camouflaged%20nanoparticles%20activate%20fibroblast-myofibroblast%20transition%20to%20promote%20skin%20wound%20healing&rft.jtitle=Biofabrication&rft.au=Jia,%20Qi&rft.date=2024-12-23&rft.volume=17&rft.issue=1&rft.issn=1758-5082&rft.eissn=1758-5090&rft.coden=BIOFCK&rft_id=info:doi/10.1088/1758-5090/ad9cc4&rft_dat=%3Cproquest_iop_j%3E3146623825%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146623825&rft_id=info:pmid/39657324&rfr_iscdi=true |