Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution

Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2024-12
Hauptverfasser: Caporale, Nicolò, Castaldi, Davide, Rigoli, Marco Tullio, Cheroni, Cristina, Valenti, Alessia, Stucchi, Sarah, Lessi, Manuel, Bulgheresi, Davide, Trattaro, Sebastiano, Pezzali, Martina, Vitriolo, Alessandro, Lopez-Tobon, Alejandro, Bonfanti, Matteo, Ricca, Dario, Schmid, Katharina T, Heinig, Matthias, Theis, Fabian J, Villa, Carlo Emanuele, Testa, Giuseppe
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Nature methods
container_volume
creator Caporale, Nicolò
Castaldi, Davide
Rigoli, Marco Tullio
Cheroni, Cristina
Valenti, Alessia
Stucchi, Sarah
Lessi, Manuel
Bulgheresi, Davide
Trattaro, Sebastiano
Pezzali, Martina
Vitriolo, Alessandro
Lopez-Tobon, Alejandro
Bonfanti, Matteo
Ricca, Dario
Schmid, Katharina T
Heinig, Matthias
Theis, Fabian J
Villa, Carlo Emanuele
Testa, Giuseppe
description Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39653820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39653820</sourcerecordid><originalsourceid>FETCH-pubmed_primary_396538203</originalsourceid><addsrcrecordid>eNqFjs1uwjAQhC0kVH7KK6B9gUgBkwJnVNQLt96RiTdhq40deTdQ3r6uVM49zWG--TQjM11Vm12xXZXVxMxEvsrS2s26ejETu3-r7G5dTs39NLBSz_hNoYU6JqXaMVySowAxtS5E8gJNTKBXBI6hJR08hQx5EsFaKWayAY835Nh3GDR3mgUq4BQkixmLGpkhoUQefhevZtw4Flz85dwsj--fh4-iHy4d-nOfqHPpcX4-tf8CPw-DTJM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</creator><creatorcontrib>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</creatorcontrib><description>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</description><identifier>EISSN: 1548-7105</identifier><identifier>PMID: 39653820</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2024-12</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7082-1099 ; 0000-0002-3142-6747 ; 0000-0003-0273-7391 ; 0000-0001-8097-4320 ; 0000-0002-9055-0801 ; 0000-0001-9898-7605 ; 0000-0002-2419-1943 ; 0000-0002-9104-0918 ; 0000-0002-5612-1720 ; 0000-0002-2108-3429 ; 0000-0003-3509-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39653820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caporale, Nicolò</creatorcontrib><creatorcontrib>Castaldi, Davide</creatorcontrib><creatorcontrib>Rigoli, Marco Tullio</creatorcontrib><creatorcontrib>Cheroni, Cristina</creatorcontrib><creatorcontrib>Valenti, Alessia</creatorcontrib><creatorcontrib>Stucchi, Sarah</creatorcontrib><creatorcontrib>Lessi, Manuel</creatorcontrib><creatorcontrib>Bulgheresi, Davide</creatorcontrib><creatorcontrib>Trattaro, Sebastiano</creatorcontrib><creatorcontrib>Pezzali, Martina</creatorcontrib><creatorcontrib>Vitriolo, Alessandro</creatorcontrib><creatorcontrib>Lopez-Tobon, Alejandro</creatorcontrib><creatorcontrib>Bonfanti, Matteo</creatorcontrib><creatorcontrib>Ricca, Dario</creatorcontrib><creatorcontrib>Schmid, Katharina T</creatorcontrib><creatorcontrib>Heinig, Matthias</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><creatorcontrib>Villa, Carlo Emanuele</creatorcontrib><creatorcontrib>Testa, Giuseppe</creatorcontrib><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</description><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjs1uwjAQhC0kVH7KK6B9gUgBkwJnVNQLt96RiTdhq40deTdQ3r6uVM49zWG--TQjM11Vm12xXZXVxMxEvsrS2s26ejETu3-r7G5dTs39NLBSz_hNoYU6JqXaMVySowAxtS5E8gJNTKBXBI6hJR08hQx5EsFaKWayAY835Nh3GDR3mgUq4BQkixmLGpkhoUQefhevZtw4Flz85dwsj--fh4-iHy4d-nOfqHPpcX4-tf8CPw-DTJM</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Caporale, Nicolò</creator><creator>Castaldi, Davide</creator><creator>Rigoli, Marco Tullio</creator><creator>Cheroni, Cristina</creator><creator>Valenti, Alessia</creator><creator>Stucchi, Sarah</creator><creator>Lessi, Manuel</creator><creator>Bulgheresi, Davide</creator><creator>Trattaro, Sebastiano</creator><creator>Pezzali, Martina</creator><creator>Vitriolo, Alessandro</creator><creator>Lopez-Tobon, Alejandro</creator><creator>Bonfanti, Matteo</creator><creator>Ricca, Dario</creator><creator>Schmid, Katharina T</creator><creator>Heinig, Matthias</creator><creator>Theis, Fabian J</creator><creator>Villa, Carlo Emanuele</creator><creator>Testa, Giuseppe</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-7082-1099</orcidid><orcidid>https://orcid.org/0000-0002-3142-6747</orcidid><orcidid>https://orcid.org/0000-0003-0273-7391</orcidid><orcidid>https://orcid.org/0000-0001-8097-4320</orcidid><orcidid>https://orcid.org/0000-0002-9055-0801</orcidid><orcidid>https://orcid.org/0000-0001-9898-7605</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0002-9104-0918</orcidid><orcidid>https://orcid.org/0000-0002-5612-1720</orcidid><orcidid>https://orcid.org/0000-0002-2108-3429</orcidid><orcidid>https://orcid.org/0000-0003-3509-9699</orcidid></search><sort><creationdate>20241209</creationdate><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><author>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_396538203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caporale, Nicolò</creatorcontrib><creatorcontrib>Castaldi, Davide</creatorcontrib><creatorcontrib>Rigoli, Marco Tullio</creatorcontrib><creatorcontrib>Cheroni, Cristina</creatorcontrib><creatorcontrib>Valenti, Alessia</creatorcontrib><creatorcontrib>Stucchi, Sarah</creatorcontrib><creatorcontrib>Lessi, Manuel</creatorcontrib><creatorcontrib>Bulgheresi, Davide</creatorcontrib><creatorcontrib>Trattaro, Sebastiano</creatorcontrib><creatorcontrib>Pezzali, Martina</creatorcontrib><creatorcontrib>Vitriolo, Alessandro</creatorcontrib><creatorcontrib>Lopez-Tobon, Alejandro</creatorcontrib><creatorcontrib>Bonfanti, Matteo</creatorcontrib><creatorcontrib>Ricca, Dario</creatorcontrib><creatorcontrib>Schmid, Katharina T</creatorcontrib><creatorcontrib>Heinig, Matthias</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><creatorcontrib>Villa, Carlo Emanuele</creatorcontrib><creatorcontrib>Testa, Giuseppe</creatorcontrib><collection>PubMed</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caporale, Nicolò</au><au>Castaldi, Davide</au><au>Rigoli, Marco Tullio</au><au>Cheroni, Cristina</au><au>Valenti, Alessia</au><au>Stucchi, Sarah</au><au>Lessi, Manuel</au><au>Bulgheresi, Davide</au><au>Trattaro, Sebastiano</au><au>Pezzali, Martina</au><au>Vitriolo, Alessandro</au><au>Lopez-Tobon, Alejandro</au><au>Bonfanti, Matteo</au><au>Ricca, Dario</au><au>Schmid, Katharina T</au><au>Heinig, Matthias</au><au>Theis, Fabian J</au><au>Villa, Carlo Emanuele</au><au>Testa, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2024-12-09</date><risdate>2024</risdate><eissn>1548-7105</eissn><abstract>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</abstract><cop>United States</cop><pmid>39653820</pmid><orcidid>https://orcid.org/0000-0001-7082-1099</orcidid><orcidid>https://orcid.org/0000-0002-3142-6747</orcidid><orcidid>https://orcid.org/0000-0003-0273-7391</orcidid><orcidid>https://orcid.org/0000-0001-8097-4320</orcidid><orcidid>https://orcid.org/0000-0002-9055-0801</orcidid><orcidid>https://orcid.org/0000-0001-9898-7605</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0002-9104-0918</orcidid><orcidid>https://orcid.org/0000-0002-5612-1720</orcidid><orcidid>https://orcid.org/0000-0002-2108-3429</orcidid><orcidid>https://orcid.org/0000-0003-3509-9699</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 1548-7105
ispartof Nature methods, 2024-12
issn 1548-7105
language eng
recordid cdi_pubmed_primary_39653820
source Nature; Alma/SFX Local Collection
title Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexing%20cortical%20brain%20organoids%20for%20the%20longitudinal%20dissection%20of%20developmental%20traits%20at%20single-cell%20resolution&rft.jtitle=Nature%20methods&rft.au=Caporale,%20Nicol%C3%B2&rft.date=2024-12-09&rft.eissn=1548-7105&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39653820%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39653820&rfr_iscdi=true