Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked co...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Nature methods |
container_volume | |
creator | Caporale, Nicolò Castaldi, Davide Rigoli, Marco Tullio Cheroni, Cristina Valenti, Alessia Stucchi, Sarah Lessi, Manuel Bulgheresi, Davide Trattaro, Sebastiano Pezzali, Martina Vitriolo, Alessandro Lopez-Tobon, Alejandro Bonfanti, Matteo Ricca, Dario Schmid, Katharina T Heinig, Matthias Theis, Fabian J Villa, Carlo Emanuele Testa, Giuseppe |
description | Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling. |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39653820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39653820</sourcerecordid><originalsourceid>FETCH-pubmed_primary_396538203</originalsourceid><addsrcrecordid>eNqFjs1uwjAQhC0kVH7KK6B9gUgBkwJnVNQLt96RiTdhq40deTdQ3r6uVM49zWG--TQjM11Vm12xXZXVxMxEvsrS2s26ejETu3-r7G5dTs39NLBSz_hNoYU6JqXaMVySowAxtS5E8gJNTKBXBI6hJR08hQx5EsFaKWayAY835Nh3GDR3mgUq4BQkixmLGpkhoUQefhevZtw4Flz85dwsj--fh4-iHy4d-nOfqHPpcX4-tf8CPw-DTJM</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</creator><creatorcontrib>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</creatorcontrib><description>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</description><identifier>EISSN: 1548-7105</identifier><identifier>PMID: 39653820</identifier><language>eng</language><publisher>United States</publisher><ispartof>Nature methods, 2024-12</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7082-1099 ; 0000-0002-3142-6747 ; 0000-0003-0273-7391 ; 0000-0001-8097-4320 ; 0000-0002-9055-0801 ; 0000-0001-9898-7605 ; 0000-0002-2419-1943 ; 0000-0002-9104-0918 ; 0000-0002-5612-1720 ; 0000-0002-2108-3429 ; 0000-0003-3509-9699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39653820$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Caporale, Nicolò</creatorcontrib><creatorcontrib>Castaldi, Davide</creatorcontrib><creatorcontrib>Rigoli, Marco Tullio</creatorcontrib><creatorcontrib>Cheroni, Cristina</creatorcontrib><creatorcontrib>Valenti, Alessia</creatorcontrib><creatorcontrib>Stucchi, Sarah</creatorcontrib><creatorcontrib>Lessi, Manuel</creatorcontrib><creatorcontrib>Bulgheresi, Davide</creatorcontrib><creatorcontrib>Trattaro, Sebastiano</creatorcontrib><creatorcontrib>Pezzali, Martina</creatorcontrib><creatorcontrib>Vitriolo, Alessandro</creatorcontrib><creatorcontrib>Lopez-Tobon, Alejandro</creatorcontrib><creatorcontrib>Bonfanti, Matteo</creatorcontrib><creatorcontrib>Ricca, Dario</creatorcontrib><creatorcontrib>Schmid, Katharina T</creatorcontrib><creatorcontrib>Heinig, Matthias</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><creatorcontrib>Villa, Carlo Emanuele</creatorcontrib><creatorcontrib>Testa, Giuseppe</creatorcontrib><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><description>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</description><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjs1uwjAQhC0kVH7KK6B9gUgBkwJnVNQLt96RiTdhq40deTdQ3r6uVM49zWG--TQjM11Vm12xXZXVxMxEvsrS2s26ejETu3-r7G5dTs39NLBSz_hNoYU6JqXaMVySowAxtS5E8gJNTKBXBI6hJR08hQx5EsFaKWayAY835Nh3GDR3mgUq4BQkixmLGpkhoUQefhevZtw4Flz85dwsj--fh4-iHy4d-nOfqHPpcX4-tf8CPw-DTJM</recordid><startdate>20241209</startdate><enddate>20241209</enddate><creator>Caporale, Nicolò</creator><creator>Castaldi, Davide</creator><creator>Rigoli, Marco Tullio</creator><creator>Cheroni, Cristina</creator><creator>Valenti, Alessia</creator><creator>Stucchi, Sarah</creator><creator>Lessi, Manuel</creator><creator>Bulgheresi, Davide</creator><creator>Trattaro, Sebastiano</creator><creator>Pezzali, Martina</creator><creator>Vitriolo, Alessandro</creator><creator>Lopez-Tobon, Alejandro</creator><creator>Bonfanti, Matteo</creator><creator>Ricca, Dario</creator><creator>Schmid, Katharina T</creator><creator>Heinig, Matthias</creator><creator>Theis, Fabian J</creator><creator>Villa, Carlo Emanuele</creator><creator>Testa, Giuseppe</creator><scope>NPM</scope><orcidid>https://orcid.org/0000-0001-7082-1099</orcidid><orcidid>https://orcid.org/0000-0002-3142-6747</orcidid><orcidid>https://orcid.org/0000-0003-0273-7391</orcidid><orcidid>https://orcid.org/0000-0001-8097-4320</orcidid><orcidid>https://orcid.org/0000-0002-9055-0801</orcidid><orcidid>https://orcid.org/0000-0001-9898-7605</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0002-9104-0918</orcidid><orcidid>https://orcid.org/0000-0002-5612-1720</orcidid><orcidid>https://orcid.org/0000-0002-2108-3429</orcidid><orcidid>https://orcid.org/0000-0003-3509-9699</orcidid></search><sort><creationdate>20241209</creationdate><title>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</title><author>Caporale, Nicolò ; Castaldi, Davide ; Rigoli, Marco Tullio ; Cheroni, Cristina ; Valenti, Alessia ; Stucchi, Sarah ; Lessi, Manuel ; Bulgheresi, Davide ; Trattaro, Sebastiano ; Pezzali, Martina ; Vitriolo, Alessandro ; Lopez-Tobon, Alejandro ; Bonfanti, Matteo ; Ricca, Dario ; Schmid, Katharina T ; Heinig, Matthias ; Theis, Fabian J ; Villa, Carlo Emanuele ; Testa, Giuseppe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_396538203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Caporale, Nicolò</creatorcontrib><creatorcontrib>Castaldi, Davide</creatorcontrib><creatorcontrib>Rigoli, Marco Tullio</creatorcontrib><creatorcontrib>Cheroni, Cristina</creatorcontrib><creatorcontrib>Valenti, Alessia</creatorcontrib><creatorcontrib>Stucchi, Sarah</creatorcontrib><creatorcontrib>Lessi, Manuel</creatorcontrib><creatorcontrib>Bulgheresi, Davide</creatorcontrib><creatorcontrib>Trattaro, Sebastiano</creatorcontrib><creatorcontrib>Pezzali, Martina</creatorcontrib><creatorcontrib>Vitriolo, Alessandro</creatorcontrib><creatorcontrib>Lopez-Tobon, Alejandro</creatorcontrib><creatorcontrib>Bonfanti, Matteo</creatorcontrib><creatorcontrib>Ricca, Dario</creatorcontrib><creatorcontrib>Schmid, Katharina T</creatorcontrib><creatorcontrib>Heinig, Matthias</creatorcontrib><creatorcontrib>Theis, Fabian J</creatorcontrib><creatorcontrib>Villa, Carlo Emanuele</creatorcontrib><creatorcontrib>Testa, Giuseppe</creatorcontrib><collection>PubMed</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Caporale, Nicolò</au><au>Castaldi, Davide</au><au>Rigoli, Marco Tullio</au><au>Cheroni, Cristina</au><au>Valenti, Alessia</au><au>Stucchi, Sarah</au><au>Lessi, Manuel</au><au>Bulgheresi, Davide</au><au>Trattaro, Sebastiano</au><au>Pezzali, Martina</au><au>Vitriolo, Alessandro</au><au>Lopez-Tobon, Alejandro</au><au>Bonfanti, Matteo</au><au>Ricca, Dario</au><au>Schmid, Katharina T</au><au>Heinig, Matthias</au><au>Theis, Fabian J</au><au>Villa, Carlo Emanuele</au><au>Testa, Giuseppe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution</atitle><jtitle>Nature methods</jtitle><addtitle>Nat Methods</addtitle><date>2024-12-09</date><risdate>2024</risdate><eissn>1548-7105</eissn><abstract>Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.</abstract><cop>United States</cop><pmid>39653820</pmid><orcidid>https://orcid.org/0000-0001-7082-1099</orcidid><orcidid>https://orcid.org/0000-0002-3142-6747</orcidid><orcidid>https://orcid.org/0000-0003-0273-7391</orcidid><orcidid>https://orcid.org/0000-0001-8097-4320</orcidid><orcidid>https://orcid.org/0000-0002-9055-0801</orcidid><orcidid>https://orcid.org/0000-0001-9898-7605</orcidid><orcidid>https://orcid.org/0000-0002-2419-1943</orcidid><orcidid>https://orcid.org/0000-0002-9104-0918</orcidid><orcidid>https://orcid.org/0000-0002-5612-1720</orcidid><orcidid>https://orcid.org/0000-0002-2108-3429</orcidid><orcidid>https://orcid.org/0000-0003-3509-9699</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1548-7105 |
ispartof | Nature methods, 2024-12 |
issn | 1548-7105 |
language | eng |
recordid | cdi_pubmed_primary_39653820 |
source | Nature; Alma/SFX Local Collection |
title | Multiplexing cortical brain organoids for the longitudinal dissection of developmental traits at single-cell resolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiplexing%20cortical%20brain%20organoids%20for%20the%20longitudinal%20dissection%20of%20developmental%20traits%20at%20single-cell%20resolution&rft.jtitle=Nature%20methods&rft.au=Caporale,%20Nicol%C3%B2&rft.date=2024-12-09&rft.eissn=1548-7105&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39653820%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39653820&rfr_iscdi=true |