Hybrid contrastive multi-scenario learning for multi-task sequential-dependence recommendation

Multi-scenario and multi-task learning are crucial in industrial recommendation systems to deliver high-quality recommendations across diverse scenarios with minimal computational overhead. However, conventional models often fail to effectively leverage cross-scenario information, limiting their rep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural networks 2025-03, Vol.183, p.106953, Article 106953
Hauptverfasser: Yi, Qingqing, Wu, Lunwen, Tang, Jingjing, Zeng, Yujian, Song, Zengchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!