ChromTR: chromosome detection in raw metaphase cell images via deformable transformers

Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of medicine 2024-12
Hauptverfasser: Xia, Chao, Wang, Jiyue, You, Xin, Fan, Yaling, Chen, Bing, Chen, Saijuan, Yang, Jie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Frontiers of medicine
container_volume
creator Xia, Chao
Wang, Jiyue
You, Xin
Fan, Yaling
Chen, Bing
Chen, Saijuan
Yang, Jie
description Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.
doi_str_mv 10.1007/s11684-024-1098-y
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39643800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39643800</sourcerecordid><originalsourceid>FETCH-LOGICAL-p591-8252814dddafb670ba932887510fdbb5f1d8a13c696fdab7740720e54ac193753</originalsourceid><addsrcrecordid>eNo1T8tKAzEUDYLYUvsBbiQ_MHrzmiTupKgVCoIMbsvNJLEj8yIZlf69U9SzOQ8ul3MIuWJwwwD0bWasNLIALgsG1hTHM7LkYNWccLUg65w_YIYsmbb2giyELaUwAEvytjmkoate72h9EkMeukB9mEI9NUNPm54m_KZdmHA8YA60Dm1Lmw7fQ6ZfDc6ncUgdujbQKWGfTy6kfEnOI7Y5rP94RarHh2qzLXYvT8-b-10xKssKwxU3THrvMbpSg0MruDFaMYjeORWZN8hEXdoyenRaS9AcgpJYMyu0Eity_ft2_HRd8PsxzdXScf-_T_wAH3NSLw</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ChromTR: chromosome detection in raw metaphase cell images via deformable transformers</title><source>SpringerLink Journals</source><creator>Xia, Chao ; Wang, Jiyue ; You, Xin ; Fan, Yaling ; Chen, Bing ; Chen, Saijuan ; Yang, Jie</creator><creatorcontrib>Xia, Chao ; Wang, Jiyue ; You, Xin ; Fan, Yaling ; Chen, Bing ; Chen, Saijuan ; Yang, Jie</creatorcontrib><description>Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.</description><identifier>EISSN: 2095-0225</identifier><identifier>DOI: 10.1007/s11684-024-1098-y</identifier><identifier>PMID: 39643800</identifier><language>eng</language><publisher>China</publisher><ispartof>Frontiers of medicine, 2024-12</ispartof><rights>2024. Higher Education Press.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39643800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xia, Chao</creatorcontrib><creatorcontrib>Wang, Jiyue</creatorcontrib><creatorcontrib>You, Xin</creatorcontrib><creatorcontrib>Fan, Yaling</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Chen, Saijuan</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><title>ChromTR: chromosome detection in raw metaphase cell images via deformable transformers</title><title>Frontiers of medicine</title><addtitle>Front Med</addtitle><description>Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.</description><issn>2095-0225</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo1T8tKAzEUDYLYUvsBbiQ_MHrzmiTupKgVCoIMbsvNJLEj8yIZlf69U9SzOQ8ul3MIuWJwwwD0bWasNLIALgsG1hTHM7LkYNWccLUg65w_YIYsmbb2giyELaUwAEvytjmkoate72h9EkMeukB9mEI9NUNPm54m_KZdmHA8YA60Dm1Lmw7fQ6ZfDc6ncUgdujbQKWGfTy6kfEnOI7Y5rP94RarHh2qzLXYvT8-b-10xKssKwxU3THrvMbpSg0MruDFaMYjeORWZN8hEXdoyenRaS9AcgpJYMyu0Eity_ft2_HRd8PsxzdXScf-_T_wAH3NSLw</recordid><startdate>20241207</startdate><enddate>20241207</enddate><creator>Xia, Chao</creator><creator>Wang, Jiyue</creator><creator>You, Xin</creator><creator>Fan, Yaling</creator><creator>Chen, Bing</creator><creator>Chen, Saijuan</creator><creator>Yang, Jie</creator><scope>NPM</scope></search><sort><creationdate>20241207</creationdate><title>ChromTR: chromosome detection in raw metaphase cell images via deformable transformers</title><author>Xia, Chao ; Wang, Jiyue ; You, Xin ; Fan, Yaling ; Chen, Bing ; Chen, Saijuan ; Yang, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p591-8252814dddafb670ba932887510fdbb5f1d8a13c696fdab7740720e54ac193753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Chao</creatorcontrib><creatorcontrib>Wang, Jiyue</creatorcontrib><creatorcontrib>You, Xin</creatorcontrib><creatorcontrib>Fan, Yaling</creatorcontrib><creatorcontrib>Chen, Bing</creatorcontrib><creatorcontrib>Chen, Saijuan</creatorcontrib><creatorcontrib>Yang, Jie</creatorcontrib><collection>PubMed</collection><jtitle>Frontiers of medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Chao</au><au>Wang, Jiyue</au><au>You, Xin</au><au>Fan, Yaling</au><au>Chen, Bing</au><au>Chen, Saijuan</au><au>Yang, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ChromTR: chromosome detection in raw metaphase cell images via deformable transformers</atitle><jtitle>Frontiers of medicine</jtitle><addtitle>Front Med</addtitle><date>2024-12-07</date><risdate>2024</risdate><eissn>2095-0225</eissn><abstract>Chromosome karyotyping is a critical way to diagnose various hematological malignancies and genetic diseases, of which chromosome detection in raw metaphase cell images is the most critical and challenging step. In this work, focusing on the joint optimization of chromosome localization and classification, we propose ChromTR to accurately detect and classify 24 classes of chromosomes in raw metaphase cell images. ChromTR incorporates semantic feature learning and class distribution learning into a unified DETR-based detection framework. Specifically, we first propose a Semantic Feature Learning Network (SFLN) for semantic feature extraction and chromosome foreground region segmentation with object-wise supervision. Next, we construct a Semantic-Aware Transformer (SAT) with two parallel encoders and a Semantic-Aware decoder to integrate global visual and semantic features. To provide a prediction with a precise chromosome number and category distribution, a Category Distribution Reasoning Module (CDRM) is built for foreground-background objects and chromosome class distribution reasoning. We evaluate ChromTR on 1404 newly collected R-band metaphase images and the public G-band dataset AutoKary2022. Our proposed ChromTR outperforms all previous chromosome detection methods with an average precision of 92.56% in R-band chromosome detection, surpassing the baseline method by 3.02%. In a clinical test, ChromTR is also confident in tackling normal and numerically abnormal karyotypes. When extended to the chromosome enumeration task, ChromTR also demonstrates state-of-the-art performances on R-band and G-band two metaphase image datasets. Given these superior performances to other methods, our proposed method has been applied to assist clinical karyotype diagnosis.</abstract><cop>China</cop><pmid>39643800</pmid><doi>10.1007/s11684-024-1098-y</doi></addata></record>
fulltext fulltext
identifier EISSN: 2095-0225
ispartof Frontiers of medicine, 2024-12
issn 2095-0225
language eng
recordid cdi_pubmed_primary_39643800
source SpringerLink Journals
title ChromTR: chromosome detection in raw metaphase cell images via deformable transformers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ChromTR:%20chromosome%20detection%20in%20raw%20metaphase%20cell%20images%20via%20deformable%20transformers&rft.jtitle=Frontiers%20of%20medicine&rft.au=Xia,%20Chao&rft.date=2024-12-07&rft.eissn=2095-0225&rft_id=info:doi/10.1007/s11684-024-1098-y&rft_dat=%3Cpubmed%3E39643800%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39643800&rfr_iscdi=true