COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation
Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introdu...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2025-02, Vol.100, p.103396, Article 103396 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103396 |
container_title | Medical image analysis |
container_volume | 100 |
creator | Chen, Lixuan Tian, Xuanyu Wu, Jiangjie Lao, Guoyan Zhang, Yuyao Wei, Hongjiang |
description | Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
•First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases. |
doi_str_mv | 10.1016/j.media.2024.103396 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39642701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524003219</els_id><sourcerecordid>3146567791</sourcerecordid><originalsourceid>FETCH-LOGICAL-e195t-acffdc95f83dc9a20011db09a7649242b570276a63566ad79522b589e41ffbce3</originalsourceid><addsrcrecordid>eNo9kdtKw0AQhhdRbK0-gSC59CZ1T9k0ghcleIJAQer1st1MZEtO7m4K3vkOvqFP4sZWr2bm55th-H-ELgmeE0zEzXbeQGnUnGLKg8JYJo7QlDBB4gWn7Pi_J8kEnTm3xRinnONTNAkopykmU7TNV0WxXK9ebqO8a51xHlofuV55o-rvzy8PTd9ZVUd1174ZP5SmDYPytXKRDgveDtqbro12RkWm6WujjY9aGMYdC70FFw6qETlHJ5WqHVwc6gy9Ptyv86e4WD0-58siBpIlPla6qkqdJdWChaIoxoSUG5ypVPCMcrpJUkxToQRLhFBlmiU0aIsMOKmqjQY2Q9f7u73t3gdwXjbGaahr1UI3OMkIF4lI04wE9OqADptgpuytaZT9kH_-BOBuD0B4eGfASqcNtDoYb0F7WXZGEizHPORW_uYhxzzkPg_2A1TGgIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146567791</pqid></control><display><type>article</type><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</creator><creatorcontrib>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</creatorcontrib><description>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
•First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103396</identifier><identifier>PMID: 39642701</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Atlases as Topic ; Brain - diagnostic imaging ; Child ; Humans ; Image denoising ; Imaging, Three-Dimensional - methods ; Implicit neural representation ; Longitudinal brain atlases ; Longitudinal Studies ; Magnetic Resonance Imaging - methods ; Spatio-Temporal Analysis</subject><ispartof>Medical image analysis, 2025-02, Vol.100, p.103396, Article 103396</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2214-2419 ; 0009-0009-7428-4310 ; 0000-0002-9060-4152 ; 0000-0001-6706-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2024.103396$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lixuan</creatorcontrib><creatorcontrib>Tian, Xuanyu</creatorcontrib><creatorcontrib>Wu, Jiangjie</creatorcontrib><creatorcontrib>Lao, Guoyan</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Wei, Hongjiang</creatorcontrib><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
•First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</description><subject>Algorithms</subject><subject>Atlases as Topic</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Humans</subject><subject>Image denoising</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Implicit neural representation</subject><subject>Longitudinal brain atlases</subject><subject>Longitudinal Studies</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Spatio-Temporal Analysis</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kdtKw0AQhhdRbK0-gSC59CZ1T9k0ghcleIJAQer1st1MZEtO7m4K3vkOvqFP4sZWr2bm55th-H-ELgmeE0zEzXbeQGnUnGLKg8JYJo7QlDBB4gWn7Pi_J8kEnTm3xRinnONTNAkopykmU7TNV0WxXK9ebqO8a51xHlofuV55o-rvzy8PTd9ZVUd1174ZP5SmDYPytXKRDgveDtqbro12RkWm6WujjY9aGMYdC70FFw6qETlHJ5WqHVwc6gy9Ptyv86e4WD0-58siBpIlPla6qkqdJdWChaIoxoSUG5ypVPCMcrpJUkxToQRLhFBlmiU0aIsMOKmqjQY2Q9f7u73t3gdwXjbGaahr1UI3OMkIF4lI04wE9OqADptgpuytaZT9kH_-BOBuD0B4eGfASqcNtDoYb0F7WXZGEizHPORW_uYhxzzkPg_2A1TGgIc</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Chen, Lixuan</creator><creator>Tian, Xuanyu</creator><creator>Wu, Jiangjie</creator><creator>Lao, Guoyan</creator><creator>Zhang, Yuyao</creator><creator>Wei, Hongjiang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2214-2419</orcidid><orcidid>https://orcid.org/0009-0009-7428-4310</orcidid><orcidid>https://orcid.org/0000-0002-9060-4152</orcidid><orcidid>https://orcid.org/0000-0001-6706-4867</orcidid></search><sort><creationdate>202502</creationdate><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><author>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e195t-acffdc95f83dc9a20011db09a7649242b570276a63566ad79522b589e41ffbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Atlases as Topic</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Humans</topic><topic>Image denoising</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Implicit neural representation</topic><topic>Longitudinal brain atlases</topic><topic>Longitudinal Studies</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lixuan</creatorcontrib><creatorcontrib>Tian, Xuanyu</creatorcontrib><creatorcontrib>Wu, Jiangjie</creatorcontrib><creatorcontrib>Lao, Guoyan</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Wei, Hongjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lixuan</au><au>Tian, Xuanyu</au><au>Wu, Jiangjie</au><au>Lao, Guoyan</au><au>Zhang, Yuyao</au><au>Wei, Hongjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2025-02</date><risdate>2025</risdate><volume>100</volume><spage>103396</spage><pages>103396-</pages><artnum>103396</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR.
•First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39642701</pmid><doi>10.1016/j.media.2024.103396</doi><orcidid>https://orcid.org/0000-0002-2214-2419</orcidid><orcidid>https://orcid.org/0009-0009-7428-4310</orcidid><orcidid>https://orcid.org/0000-0002-9060-4152</orcidid><orcidid>https://orcid.org/0000-0001-6706-4867</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2025-02, Vol.100, p.103396, Article 103396 |
issn | 1361-8415 1361-8423 1361-8423 |
language | eng |
recordid | cdi_pubmed_primary_39642701 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Atlases as Topic Brain - diagnostic imaging Child Humans Image denoising Imaging, Three-Dimensional - methods Implicit neural representation Longitudinal brain atlases Longitudinal Studies Magnetic Resonance Imaging - methods Spatio-Temporal Analysis |
title | COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COLLATOR:%20Consistent%20spatial%E2%80%93temporal%20longitudinal%20atlas%20construction%20via%20implicit%20neural%20representation&rft.jtitle=Medical%20image%20analysis&rft.au=Chen,%20Lixuan&rft.date=2025-02&rft.volume=100&rft.spage=103396&rft.pages=103396-&rft.artnum=103396&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103396&rft_dat=%3Cproquest_pubme%3E3146567791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146567791&rft_id=info:pmid/39642701&rft_els_id=S1361841524003219&rfr_iscdi=true |