COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation

Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2025-02, Vol.100, p.103396, Article 103396
Hauptverfasser: Chen, Lixuan, Tian, Xuanyu, Wu, Jiangjie, Lao, Guoyan, Zhang, Yuyao, Wei, Hongjiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 103396
container_title Medical image analysis
container_volume 100
creator Chen, Lixuan
Tian, Xuanyu
Wu, Jiangjie
Lao, Guoyan
Zhang, Yuyao
Wei, Hongjiang
description Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR. •First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.
doi_str_mv 10.1016/j.media.2024.103396
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39642701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841524003219</els_id><sourcerecordid>3146567791</sourcerecordid><originalsourceid>FETCH-LOGICAL-e195t-acffdc95f83dc9a20011db09a7649242b570276a63566ad79522b589e41ffbce3</originalsourceid><addsrcrecordid>eNo9kdtKw0AQhhdRbK0-gSC59CZ1T9k0ghcleIJAQer1st1MZEtO7m4K3vkOvqFP4sZWr2bm55th-H-ELgmeE0zEzXbeQGnUnGLKg8JYJo7QlDBB4gWn7Pi_J8kEnTm3xRinnONTNAkopykmU7TNV0WxXK9ebqO8a51xHlofuV55o-rvzy8PTd9ZVUd1174ZP5SmDYPytXKRDgveDtqbro12RkWm6WujjY9aGMYdC70FFw6qETlHJ5WqHVwc6gy9Ptyv86e4WD0-58siBpIlPla6qkqdJdWChaIoxoSUG5ypVPCMcrpJUkxToQRLhFBlmiU0aIsMOKmqjQY2Q9f7u73t3gdwXjbGaahr1UI3OMkIF4lI04wE9OqADptgpuytaZT9kH_-BOBuD0B4eGfASqcNtDoYb0F7WXZGEizHPORW_uYhxzzkPg_2A1TGgIc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146567791</pqid></control><display><type>article</type><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</creator><creatorcontrib>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</creatorcontrib><description>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR. •First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</description><identifier>ISSN: 1361-8415</identifier><identifier>ISSN: 1361-8423</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2024.103396</identifier><identifier>PMID: 39642701</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Atlases as Topic ; Brain - diagnostic imaging ; Child ; Humans ; Image denoising ; Imaging, Three-Dimensional - methods ; Implicit neural representation ; Longitudinal brain atlases ; Longitudinal Studies ; Magnetic Resonance Imaging - methods ; Spatio-Temporal Analysis</subject><ispartof>Medical image analysis, 2025-02, Vol.100, p.103396, Article 103396</ispartof><rights>2024 Elsevier B.V.</rights><rights>Copyright © 2024 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2214-2419 ; 0009-0009-7428-4310 ; 0000-0002-9060-4152 ; 0000-0001-6706-4867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2024.103396$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642701$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Lixuan</creatorcontrib><creatorcontrib>Tian, Xuanyu</creatorcontrib><creatorcontrib>Wu, Jiangjie</creatorcontrib><creatorcontrib>Lao, Guoyan</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Wei, Hongjiang</creatorcontrib><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR. •First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</description><subject>Algorithms</subject><subject>Atlases as Topic</subject><subject>Brain - diagnostic imaging</subject><subject>Child</subject><subject>Humans</subject><subject>Image denoising</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Implicit neural representation</subject><subject>Longitudinal brain atlases</subject><subject>Longitudinal Studies</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Spatio-Temporal Analysis</subject><issn>1361-8415</issn><issn>1361-8423</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kdtKw0AQhhdRbK0-gSC59CZ1T9k0ghcleIJAQer1st1MZEtO7m4K3vkOvqFP4sZWr2bm55th-H-ELgmeE0zEzXbeQGnUnGLKg8JYJo7QlDBB4gWn7Pi_J8kEnTm3xRinnONTNAkopykmU7TNV0WxXK9ebqO8a51xHlofuV55o-rvzy8PTd9ZVUd1174ZP5SmDYPytXKRDgveDtqbro12RkWm6WujjY9aGMYdC70FFw6qETlHJ5WqHVwc6gy9Ptyv86e4WD0-58siBpIlPla6qkqdJdWChaIoxoSUG5ypVPCMcrpJUkxToQRLhFBlmiU0aIsMOKmqjQY2Q9f7u73t3gdwXjbGaahr1UI3OMkIF4lI04wE9OqADptgpuytaZT9kH_-BOBuD0B4eGfASqcNtDoYb0F7WXZGEizHPORW_uYhxzzkPg_2A1TGgIc</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Chen, Lixuan</creator><creator>Tian, Xuanyu</creator><creator>Wu, Jiangjie</creator><creator>Lao, Guoyan</creator><creator>Zhang, Yuyao</creator><creator>Wei, Hongjiang</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2214-2419</orcidid><orcidid>https://orcid.org/0009-0009-7428-4310</orcidid><orcidid>https://orcid.org/0000-0002-9060-4152</orcidid><orcidid>https://orcid.org/0000-0001-6706-4867</orcidid></search><sort><creationdate>202502</creationdate><title>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</title><author>Chen, Lixuan ; Tian, Xuanyu ; Wu, Jiangjie ; Lao, Guoyan ; Zhang, Yuyao ; Wei, Hongjiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e195t-acffdc95f83dc9a20011db09a7649242b570276a63566ad79522b589e41ffbce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Atlases as Topic</topic><topic>Brain - diagnostic imaging</topic><topic>Child</topic><topic>Humans</topic><topic>Image denoising</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Implicit neural representation</topic><topic>Longitudinal brain atlases</topic><topic>Longitudinal Studies</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Spatio-Temporal Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Lixuan</creatorcontrib><creatorcontrib>Tian, Xuanyu</creatorcontrib><creatorcontrib>Wu, Jiangjie</creatorcontrib><creatorcontrib>Lao, Guoyan</creatorcontrib><creatorcontrib>Zhang, Yuyao</creatorcontrib><creatorcontrib>Wei, Hongjiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Lixuan</au><au>Tian, Xuanyu</au><au>Wu, Jiangjie</au><au>Lao, Guoyan</au><au>Zhang, Yuyao</au><au>Wei, Hongjiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2025-02</date><risdate>2025</risdate><volume>100</volume><spage>103396</spage><pages>103396-</pages><artnum>103396</artnum><issn>1361-8415</issn><issn>1361-8423</issn><eissn>1361-8423</eissn><abstract>Longitudinal brain atlases that present brain development trend along time, are essential tools for brain development studies. However, conventional methods construct these atlases by independently averaging brain images from different individuals at discrete time points. This approach could introduce temporal inconsistencies due to variations in ontogenetic trends among samples, potentially affecting accuracy of brain developmental characteristic analysis. In this paper, we propose an implicit neural representation (INR)-based framework to improve the temporal consistency in longitudinal atlases. We treat temporal inconsistency as a 4-dimensional (4D) image denoising task, where the data consists of 3D spatial information and 1D temporal progression. We formulate the longitudinal atlas as an implicit function of the spatial–temporal coordinates, allowing structural inconsistency over the time to be considered as 3D image noise along age. Inspired by recent self-supervised denoising methods (e.g. Noise2Noise), our approach learns the noise-free and temporally continuous implicit function from inconsistent longitudinal atlas data. Finally, the time-consistent longitudinal brain atlas can be reconstructed by evaluating the denoised 4D INR function at critical brain developing time points. We evaluate our approach on three longitudinal brain atlases of different MRI modalities, demonstrating that our method significantly improves temporal consistency while accurately preserving brain structures. Additionally, the continuous functions generated by our method enable the creation of 4D atlases with higher spatial and temporal resolution. Code: https://github.com/maopaom/COLLATOR. •First proposal of tackling improving temporal consistency of atlases as an image denoising task.•Used the implicit neural representation (INR) to represent the longitudinal atlases as an implicit function.•Used the continuity prior inherent in the implicit function to facilitate self-supervised learning denoising.•Constructed consistent spatial–temporal longitudinal atlases.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>39642701</pmid><doi>10.1016/j.media.2024.103396</doi><orcidid>https://orcid.org/0000-0002-2214-2419</orcidid><orcidid>https://orcid.org/0009-0009-7428-4310</orcidid><orcidid>https://orcid.org/0000-0002-9060-4152</orcidid><orcidid>https://orcid.org/0000-0001-6706-4867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2025-02, Vol.100, p.103396, Article 103396
issn 1361-8415
1361-8423
1361-8423
language eng
recordid cdi_pubmed_primary_39642701
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Atlases as Topic
Brain - diagnostic imaging
Child
Humans
Image denoising
Imaging, Three-Dimensional - methods
Implicit neural representation
Longitudinal brain atlases
Longitudinal Studies
Magnetic Resonance Imaging - methods
Spatio-Temporal Analysis
title COLLATOR: Consistent spatial–temporal longitudinal atlas construction via implicit neural representation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A20%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=COLLATOR:%20Consistent%20spatial%E2%80%93temporal%20longitudinal%20atlas%20construction%20via%20implicit%20neural%20representation&rft.jtitle=Medical%20image%20analysis&rft.au=Chen,%20Lixuan&rft.date=2025-02&rft.volume=100&rft.spage=103396&rft.pages=103396-&rft.artnum=103396&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2024.103396&rft_dat=%3Cproquest_pubme%3E3146567791%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146567791&rft_id=info:pmid/39642701&rft_els_id=S1361841524003219&rfr_iscdi=true