Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition

Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food chemistry 2024-11, Vol.467, p.142286
Hauptverfasser: Ju, Yanjun, Liu, Hejiang, Niu, Shuhui, Kang, Lu, Ma, Lei, Li, An, Zhao, Yan, Yuan, Yuwei, Zhao, Duoyong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 142286
container_title Food chemistry
container_volume 467
creator Ju, Yanjun
Liu, Hejiang
Niu, Shuhui
Kang, Lu
Ma, Lei
Li, An
Zhao, Yan
Yuan, Yuwei
Zhao, Duoyong
description Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39642418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39642418</sourcerecordid><originalsourceid>FETCH-pubmed_primary_396424183</originalsourceid><addsrcrecordid>eNqFj91Kw0AQhRdBbP15BZkHSCE_xURvi6IgeNP7MtlMkpH9Y3dSiO_ne5kWvRYOzHD4zoFzodZFU1ebOq_LlbpO6TPP8zIvmiu1qh4ftuW2aNbq-yMIW_5iN8BAfogYRtZoQCJqwpYNywzWd2QS-B52IztKBO-z5slCi3HRZJ_gzR0pCQ8opyrqe9JyTkQa2LsM9GSEjxgzQNfBiPHEw0wYwTtwk0QmJymDlj3qBaXlJ0P25J4zSbA1BJy8-ECgvQ0-sSztt-qyR5Po7vfeqPuX5_3udROm1lJ3CJEtxvnwt7v6F_gBiCppRA</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ju, Yanjun ; Liu, Hejiang ; Niu, Shuhui ; Kang, Lu ; Ma, Lei ; Li, An ; Zhao, Yan ; Yuan, Yuwei ; Zhao, Duoyong</creator><creatorcontrib>Ju, Yanjun ; Liu, Hejiang ; Niu, Shuhui ; Kang, Lu ; Ma, Lei ; Li, An ; Zhao, Yan ; Yuan, Yuwei ; Zhao, Duoyong</creatorcontrib><description>Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.</description><identifier>EISSN: 1873-7072</identifier><identifier>PMID: 39642418</identifier><language>eng</language><publisher>England</publisher><ispartof>Food chemistry, 2024-11, Vol.467, p.142286</ispartof><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39642418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ju, Yanjun</creatorcontrib><creatorcontrib>Liu, Hejiang</creatorcontrib><creatorcontrib>Niu, Shuhui</creatorcontrib><creatorcontrib>Kang, Lu</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Yuan, Yuwei</creatorcontrib><creatorcontrib>Zhao, Duoyong</creatorcontrib><title>Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition</title><title>Food chemistry</title><addtitle>Food Chem</addtitle><description>Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.</description><issn>1873-7072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFj91Kw0AQhRdBbP15BZkHSCE_xURvi6IgeNP7MtlMkpH9Y3dSiO_ne5kWvRYOzHD4zoFzodZFU1ebOq_LlbpO6TPP8zIvmiu1qh4ftuW2aNbq-yMIW_5iN8BAfogYRtZoQCJqwpYNywzWd2QS-B52IztKBO-z5slCi3HRZJ_gzR0pCQ8opyrqe9JyTkQa2LsM9GSEjxgzQNfBiPHEw0wYwTtwk0QmJymDlj3qBaXlJ0P25J4zSbA1BJy8-ECgvQ0-sSztt-qyR5Po7vfeqPuX5_3udROm1lJ3CJEtxvnwt7v6F_gBiCppRA</recordid><startdate>20241129</startdate><enddate>20241129</enddate><creator>Ju, Yanjun</creator><creator>Liu, Hejiang</creator><creator>Niu, Shuhui</creator><creator>Kang, Lu</creator><creator>Ma, Lei</creator><creator>Li, An</creator><creator>Zhao, Yan</creator><creator>Yuan, Yuwei</creator><creator>Zhao, Duoyong</creator><scope>NPM</scope></search><sort><creationdate>20241129</creationdate><title>Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition</title><author>Ju, Yanjun ; Liu, Hejiang ; Niu, Shuhui ; Kang, Lu ; Ma, Lei ; Li, An ; Zhao, Yan ; Yuan, Yuwei ; Zhao, Duoyong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_396424183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ju, Yanjun</creatorcontrib><creatorcontrib>Liu, Hejiang</creatorcontrib><creatorcontrib>Niu, Shuhui</creatorcontrib><creatorcontrib>Kang, Lu</creatorcontrib><creatorcontrib>Ma, Lei</creatorcontrib><creatorcontrib>Li, An</creatorcontrib><creatorcontrib>Zhao, Yan</creatorcontrib><creatorcontrib>Yuan, Yuwei</creatorcontrib><creatorcontrib>Zhao, Duoyong</creatorcontrib><collection>PubMed</collection><jtitle>Food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ju, Yanjun</au><au>Liu, Hejiang</au><au>Niu, Shuhui</au><au>Kang, Lu</au><au>Ma, Lei</au><au>Li, An</au><au>Zhao, Yan</au><au>Yuan, Yuwei</au><au>Zhao, Duoyong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition</atitle><jtitle>Food chemistry</jtitle><addtitle>Food Chem</addtitle><date>2024-11-29</date><risdate>2024</risdate><volume>467</volume><spage>142286</spage><pages>142286-</pages><eissn>1873-7072</eissn><abstract>Lycium barbarum is a type of "medicine-food homology" whose geographical origin has attracted strong interest from consumers due to different regional quality characteristics. A sophisticated OPLS-DA model to verify Lycium barbarum origin was developed using 266 samples gathered from five cultivars in two regions between 2020 and 2022, which was based on 67 indices, including nutrients, bioactives, elements and stable isotopes. Twelve variables (fructose, δ H, glucose, tartaric acid, Mo, Na, Sr, His, Phe, Mn, Lys and Rb) were selected to refine models that could distinguish Lycium barbarum origin without being impacted by cultivar or year. The model of training set and testing set samples had discrimination rates of 100 % and 94.71 % to 98.28 %, suggesting an optimized multi-variate analysis strategy using OPLS-DA model could correctly predict the origin of blind Lycium barbarum samples. This study provides new evidence for constructing a reliable traceability model for the geographical origins of Lycium barbarum.</abstract><cop>England</cop><pmid>39642418</pmid></addata></record>
fulltext fulltext
identifier EISSN: 1873-7072
ispartof Food chemistry, 2024-11, Vol.467, p.142286
issn 1873-7072
language eng
recordid cdi_pubmed_primary_39642418
source Access via ScienceDirect (Elsevier)
title Optimizing geographical traceability models of Chinese Lycium barbarum: Investigating effects of region, cultivar, and harvest year on nutrients, bioactives, elements and stable isotope composition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T20%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20geographical%20traceability%20models%20of%20Chinese%20Lycium%20barbarum:%20Investigating%20effects%20of%20region,%20cultivar,%20and%20harvest%20year%20on%20nutrients,%20bioactives,%20elements%20and%20stable%20isotope%20composition&rft.jtitle=Food%20chemistry&rft.au=Ju,%20Yanjun&rft.date=2024-11-29&rft.volume=467&rft.spage=142286&rft.pages=142286-&rft.eissn=1873-7072&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39642418%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39642418&rfr_iscdi=true