Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia

Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin ang...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Free radical biology & medicine 2025-02, Vol.227, p.143-156
Hauptverfasser: Zhang, Wencui, Jiao, Bo, Yu, Shangchen, Zhang, Kaiwen, Sun, Jiaoli, Liu, Baowen, Zhang, Xianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 143
container_title Free radical biology & medicine
container_volume 227
creator Zhang, Wencui
Jiao, Bo
Yu, Shangchen
Zhang, Kaiwen
Sun, Jiaoli
Liu, Baowen
Zhang, Xianwei
description Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1–7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism. [Display omitted] •SNI disrupts the equilibrium of RAS activity towards the proinflammatory ACE/Ang II/AT1R axis in the spinal cord.•Blocking AT1R promotes the transition of microglia from M1 to M2 phenotype by inhibiting NOX2-derived oxidative stress.•Oxidative damage triggered by NOX2 activates the HMGB1/NF-kB signaling pathway in BV-2 cells.•Spinal AT1R blockade inhibits microglia M1 polarization in SNI rats by suppressing the NOX2/HMGB1/NF-kB signaling pathway.
doi_str_mv 10.1016/j.freeradbiomed.2024.12.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39638264</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S089158492401102X</els_id><sourcerecordid>3146533723</sourcerecordid><originalsourceid>FETCH-LOGICAL-e203t-2c0cb93f634c42858ad2d5fe09b074caf62fac9c3b19aa3190904b996addbdc43</originalsourceid><addsrcrecordid>eNpVkUtr3TAQhUVpaW7T_oUi6KYbu3rZ11qGkD4gJNCm0J0YS-PbudiSI8uh_fd1uMmiq4Hh43D4DmMfpKilkO2nYz1kxAyhpzRhqJVQppaqFsK8YDvZ7XVlGtu-ZDvRWVk1nbFn7M2yHMVGNLp7zc60bXWnWrNj9z9mijDyizv5nfsUS6Z-LbjwknjENSeKwwjTBIVS5BDD6TtD-U2ez0CRPxDwm9tfqgo4YwwYC88Y0h--0GGLpnjgGzWRz-kwErxlrwYYF3z3dM_Zz89Xd5dfq-vbL98uL64rVEKXSnnhe6uHVhtvVNd0EFRoBhS2F3vjYWjVAN563UsLoKUVVpje2hZC6IM3-px9POXOOd2vuBQ30eJxHCFiWhenpWkbrfdKb-j7J3TtN6NuzjRB_uueNW3A1QnArfADYXaLJ4weA2X0xYVETgr3OI87uv_mcY_zOKncJl__A4U3iJQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3146533723</pqid></control><display><type>article</type><title>Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Wencui ; Jiao, Bo ; Yu, Shangchen ; Zhang, Kaiwen ; Sun, Jiaoli ; Liu, Baowen ; Zhang, Xianwei</creator><creatorcontrib>Zhang, Wencui ; Jiao, Bo ; Yu, Shangchen ; Zhang, Kaiwen ; Sun, Jiaoli ; Liu, Baowen ; Zhang, Xianwei</creatorcontrib><description>Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1–7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism. [Display omitted] •SNI disrupts the equilibrium of RAS activity towards the proinflammatory ACE/Ang II/AT1R axis in the spinal cord.•Blocking AT1R promotes the transition of microglia from M1 to M2 phenotype by inhibiting NOX2-derived oxidative stress.•Oxidative damage triggered by NOX2 activates the HMGB1/NF-kB signaling pathway in BV-2 cells.•Spinal AT1R blockade inhibits microglia M1 polarization in SNI rats by suppressing the NOX2/HMGB1/NF-kB signaling pathway.</description><identifier>ISSN: 0891-5849</identifier><identifier>ISSN: 1873-4596</identifier><identifier>EISSN: 1873-4596</identifier><identifier>DOI: 10.1016/j.freeradbiomed.2024.12.004</identifier><identifier>PMID: 39638264</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Microglia ; NADPH oxidase ; Neuroinflammation ; Reactive oxygen species ; Renin-angiotensinogen system</subject><ispartof>Free radical biology &amp; medicine, 2025-02, Vol.227, p.143-156</ispartof><rights>2024 The Authors</rights><rights>Copyright © 2024. Published by Elsevier Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9361-8202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.freeradbiomed.2024.12.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39638264$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Wencui</creatorcontrib><creatorcontrib>Jiao, Bo</creatorcontrib><creatorcontrib>Yu, Shangchen</creatorcontrib><creatorcontrib>Zhang, Kaiwen</creatorcontrib><creatorcontrib>Sun, Jiaoli</creatorcontrib><creatorcontrib>Liu, Baowen</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><title>Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia</title><title>Free radical biology &amp; medicine</title><addtitle>Free Radic Biol Med</addtitle><description>Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1–7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism. [Display omitted] •SNI disrupts the equilibrium of RAS activity towards the proinflammatory ACE/Ang II/AT1R axis in the spinal cord.•Blocking AT1R promotes the transition of microglia from M1 to M2 phenotype by inhibiting NOX2-derived oxidative stress.•Oxidative damage triggered by NOX2 activates the HMGB1/NF-kB signaling pathway in BV-2 cells.•Spinal AT1R blockade inhibits microglia M1 polarization in SNI rats by suppressing the NOX2/HMGB1/NF-kB signaling pathway.</description><subject>Microglia</subject><subject>NADPH oxidase</subject><subject>Neuroinflammation</subject><subject>Reactive oxygen species</subject><subject>Renin-angiotensinogen system</subject><issn>0891-5849</issn><issn>1873-4596</issn><issn>1873-4596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpVkUtr3TAQhUVpaW7T_oUi6KYbu3rZ11qGkD4gJNCm0J0YS-PbudiSI8uh_fd1uMmiq4Hh43D4DmMfpKilkO2nYz1kxAyhpzRhqJVQppaqFsK8YDvZ7XVlGtu-ZDvRWVk1nbFn7M2yHMVGNLp7zc60bXWnWrNj9z9mijDyizv5nfsUS6Z-LbjwknjENSeKwwjTBIVS5BDD6TtD-U2ez0CRPxDwm9tfqgo4YwwYC88Y0h--0GGLpnjgGzWRz-kwErxlrwYYF3z3dM_Zz89Xd5dfq-vbL98uL64rVEKXSnnhe6uHVhtvVNd0EFRoBhS2F3vjYWjVAN563UsLoKUVVpje2hZC6IM3-px9POXOOd2vuBQ30eJxHCFiWhenpWkbrfdKb-j7J3TtN6NuzjRB_uueNW3A1QnArfADYXaLJ4weA2X0xYVETgr3OI87uv_mcY_zOKncJl__A4U3iJQ</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Zhang, Wencui</creator><creator>Jiao, Bo</creator><creator>Yu, Shangchen</creator><creator>Zhang, Kaiwen</creator><creator>Sun, Jiaoli</creator><creator>Liu, Baowen</creator><creator>Zhang, Xianwei</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9361-8202</orcidid></search><sort><creationdate>20250201</creationdate><title>Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia</title><author>Zhang, Wencui ; Jiao, Bo ; Yu, Shangchen ; Zhang, Kaiwen ; Sun, Jiaoli ; Liu, Baowen ; Zhang, Xianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e203t-2c0cb93f634c42858ad2d5fe09b074caf62fac9c3b19aa3190904b996addbdc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Microglia</topic><topic>NADPH oxidase</topic><topic>Neuroinflammation</topic><topic>Reactive oxygen species</topic><topic>Renin-angiotensinogen system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Wencui</creatorcontrib><creatorcontrib>Jiao, Bo</creatorcontrib><creatorcontrib>Yu, Shangchen</creatorcontrib><creatorcontrib>Zhang, Kaiwen</creatorcontrib><creatorcontrib>Sun, Jiaoli</creatorcontrib><creatorcontrib>Liu, Baowen</creatorcontrib><creatorcontrib>Zhang, Xianwei</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Free radical biology &amp; medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Wencui</au><au>Jiao, Bo</au><au>Yu, Shangchen</au><au>Zhang, Kaiwen</au><au>Sun, Jiaoli</au><au>Liu, Baowen</au><au>Zhang, Xianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia</atitle><jtitle>Free radical biology &amp; medicine</jtitle><addtitle>Free Radic Biol Med</addtitle><date>2025-02-01</date><risdate>2025</risdate><volume>227</volume><spage>143</spage><epage>156</epage><pages>143-156</pages><issn>0891-5849</issn><issn>1873-4596</issn><eissn>1873-4596</eissn><abstract>Microglia-mediated neuroinflammation demonstrates a crucial act in the progression of neuropathic pain. Oxidative damage induced by reactive oxygen species (ROS) derived from NADPH oxidase (NOX) in microglia drives proinflammatory microglia activation. Recent evidence points to the central renin angiotensin system (RAS) is involved in oxidative stress and neuroinflammation, with the angiotensin converting enzyme/angiotensin II/angiotensin receptor-1 (ACE/Ang II/AT1R) axis promoting inflammation through increased ROS production, counteracted by the ACE2/Ang (1–7)/Mas receptor (MasR) axis. While interventions targeting spinal AT1R have been shown to alleviate nociceptive hypersensitivity; yet the mechanisms remain elusive. Here, we discovered that spared nerve injury (SNI)-induced mechanical allodynia in rats were associated with M1-like microglia activation, oxidative stress and overactivity of ACE/Ang II/AT1R axis in the spinal cord. Increased AT1R and NOX2 expression were observed in activated dorsal horn microglia following SNI. Blockade of AT1R with losartan potassium (LOP) suppressed NOX2-mediated oxidative stress, and promoted a shift in microglia from the proinflammatory M1 phenotype to the anti-inflammatory M2 phenotype in LPS-treated BV-2 cells. Additionally, NOX2 overexpression triggered the activation of the high-mobility group box 1/nuclear factor-kappa B (HMGB1/NF-κB) signaling pathway. Intrathecal administration of LOP effectively inhibited SNI-induced NOX2 overactivation in microglia and suppressed the HMGB1/NF-kB pathway, reducing oxidative stress and shifting the microglia polarization from M1 to M2 in the spinal cord, thereby attenuating neuroinflammation and pain hypersensitivity. Collectively, these findings underscore the neuroimmune-modulating effects of spinal AT1R in neuropathic pain, highlighting the regulation of redox homeostasis in microglia via a NOX2 dependent mechanism. [Display omitted] •SNI disrupts the equilibrium of RAS activity towards the proinflammatory ACE/Ang II/AT1R axis in the spinal cord.•Blocking AT1R promotes the transition of microglia from M1 to M2 phenotype by inhibiting NOX2-derived oxidative stress.•Oxidative damage triggered by NOX2 activates the HMGB1/NF-kB signaling pathway in BV-2 cells.•Spinal AT1R blockade inhibits microglia M1 polarization in SNI rats by suppressing the NOX2/HMGB1/NF-kB signaling pathway.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>39638264</pmid><doi>10.1016/j.freeradbiomed.2024.12.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9361-8202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0891-5849
ispartof Free radical biology & medicine, 2025-02, Vol.227, p.143-156
issn 0891-5849
1873-4596
1873-4596
language eng
recordid cdi_pubmed_primary_39638264
source ScienceDirect Journals (5 years ago - present)
subjects Microglia
NADPH oxidase
Neuroinflammation
Reactive oxygen species
Renin-angiotensinogen system
title Spinal AT1R contributes to neuroinflammation and neuropathic pain via NOX2-dependent redox signaling in microglia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A11%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spinal%20AT1R%20contributes%20to%20neuroinflammation%20and%20neuropathic%20pain%20via%20NOX2-dependent%20redox%20signaling%20in%20microglia&rft.jtitle=Free%20radical%20biology%20&%20medicine&rft.au=Zhang,%20Wencui&rft.date=2025-02-01&rft.volume=227&rft.spage=143&rft.epage=156&rft.pages=143-156&rft.issn=0891-5849&rft.eissn=1873-4596&rft_id=info:doi/10.1016/j.freeradbiomed.2024.12.004&rft_dat=%3Cproquest_pubme%3E3146533723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3146533723&rft_id=info:pmid/39638264&rft_els_id=S089158492401102X&rfr_iscdi=true