Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy

β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2024-12, Vol.161 (21)
Hauptverfasser: Dong, Shilin, Zhang, Guangwu, Zhang, Guangzheng, Lan, Xin, Wang, Xinyu, Xin, Gongming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title The Journal of chemical physics
container_volume 161
creator Dong, Shilin
Zhang, Guangwu
Zhang, Guangzheng
Lan, Xin
Wang, Xinyu
Xin, Gongming
description β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep knowledge on the thermal transport mechanism of β-Ga2O3 with defect is still lacking now. In this work, the thermal transport of β-Ga2O3 with vacancy defects is investigated using the machine learning-assisted calculation method. First, the machine learning moment tensor potential (MTP), which can accurately describe the lattice dynamics behaviors of pristine β-Ga2O3 and solves the problem of low computational efficiency of existing computational models in β-Ga2O3 large-scale simulations, is developed for studying the thermal transport of the pristine β-Ga2O3. Then, the MTP is further developed for investigating the thermal transport of β-Ga2O3 with vacancy and the thermal conductivity of β-Ga2O3 with oxygen atom vacancies, which are evaluated by machine learning potential combined with molecular dynamics. The result shows that 0.52% oxygen atom vacancies can cause a 52.5% reduction in the thermal conductivity of β-Ga2O3 [100] direction, illustrating that thermal conductivity can be observably suppressed by vacancy. Finally, by analyzing the phonon group velocity, participation ratio, and spectral energy density, the oxygen atom vacancies in β-Ga2O3 are demonstrated to lead to a significant change in harmonic and anharmonic phonon activities. The findings of this study offer crucial insights into the thermal transport properties of β-Ga2O3 and are anticipated to contribute valuable knowledge to the thermal management of power devices based on β-Ga2O3.
doi_str_mv 10.1063/5.0237656
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39625322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3138960002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-528dd301d8a7bf3696e0e1db82dfba05a93ce8ba60bcb5f5ef5860fbcdd4efac3</originalsourceid><addsrcrecordid>eNp90M1OGzEQwHELUZVAOfACaCUugLR0bMfO-oiiFpCouLQHTqtZfySONt5gO0F5LR6kz1TTpD30UMkjX34ajf6EnFG4oSD5Z3EDjE-kkAdkRKFR9UQqOCQjAEZrJUEekeOUFgBAJ2z8kRxxJZngjI3I8zfUcx9s1VuMwYdZjSn5lK2pfNjYlP0Msx9CVV6e2_eJS-yrHDGk1RBzNbjq51t9h-yJV68-z6sNagx6-4l8cNgne7r_T8iPr1--T-_rx6e7h-ntY60Zb3ItWGMMB2oanHSOSyUtWGq6hhnXIQhUXNumQwmd7oQT1olGguu0MWPrUPMTcrnbu4rDy7pc3C590rbvMdhhnVpOx6CYUEoVevEPXQzrGMp1RfGmlCrFirraKR2HlKJ17Sr6JcZtS6F9792Kdt-72PP9xnW3tOav_BO4gOsdSNrn3yX_s-0XyVCJCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3138960002</pqid></control><display><type>article</type><title>Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy</title><source>AIP Journals Complete</source><creator>Dong, Shilin ; Zhang, Guangwu ; Zhang, Guangzheng ; Lan, Xin ; Wang, Xinyu ; Xin, Gongming</creator><creatorcontrib>Dong, Shilin ; Zhang, Guangwu ; Zhang, Guangzheng ; Lan, Xin ; Wang, Xinyu ; Xin, Gongming</creatorcontrib><description>β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep knowledge on the thermal transport mechanism of β-Ga2O3 with defect is still lacking now. In this work, the thermal transport of β-Ga2O3 with vacancy defects is investigated using the machine learning-assisted calculation method. First, the machine learning moment tensor potential (MTP), which can accurately describe the lattice dynamics behaviors of pristine β-Ga2O3 and solves the problem of low computational efficiency of existing computational models in β-Ga2O3 large-scale simulations, is developed for studying the thermal transport of the pristine β-Ga2O3. Then, the MTP is further developed for investigating the thermal transport of β-Ga2O3 with vacancy and the thermal conductivity of β-Ga2O3 with oxygen atom vacancies, which are evaluated by machine learning potential combined with molecular dynamics. The result shows that 0.52% oxygen atom vacancies can cause a 52.5% reduction in the thermal conductivity of β-Ga2O3 [100] direction, illustrating that thermal conductivity can be observably suppressed by vacancy. Finally, by analyzing the phonon group velocity, participation ratio, and spectral energy density, the oxygen atom vacancies in β-Ga2O3 are demonstrated to lead to a significant change in harmonic and anharmonic phonon activities. The findings of this study offer crucial insights into the thermal transport properties of β-Ga2O3 and are anticipated to contribute valuable knowledge to the thermal management of power devices based on β-Ga2O3.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0237656</identifier><identifier>PMID: 39625322</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Anharmonicity ; Defects ; Electronic devices ; Gallium oxides ; Group velocity ; Heat conductivity ; Heat transfer ; Lattice vacancies ; Machine learning ; Molecular dynamics ; Oxygen ; Phonons ; Tensors ; Thermal conductivity ; Thermal management ; Transport properties ; Wide bandgap semiconductors</subject><ispartof>The Journal of chemical physics, 2024-12, Vol.161 (21)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-528dd301d8a7bf3696e0e1db82dfba05a93ce8ba60bcb5f5ef5860fbcdd4efac3</cites><orcidid>0000-0002-2119-4655 ; 0000-0003-3974-0391 ; 0000-0003-1741-7091 ; 0000-0003-4143-334X ; 0009-0005-6527-2343</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0237656$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39625322$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Zhang, Guangwu</creatorcontrib><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Lan, Xin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><title>Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep knowledge on the thermal transport mechanism of β-Ga2O3 with defect is still lacking now. In this work, the thermal transport of β-Ga2O3 with vacancy defects is investigated using the machine learning-assisted calculation method. First, the machine learning moment tensor potential (MTP), which can accurately describe the lattice dynamics behaviors of pristine β-Ga2O3 and solves the problem of low computational efficiency of existing computational models in β-Ga2O3 large-scale simulations, is developed for studying the thermal transport of the pristine β-Ga2O3. Then, the MTP is further developed for investigating the thermal transport of β-Ga2O3 with vacancy and the thermal conductivity of β-Ga2O3 with oxygen atom vacancies, which are evaluated by machine learning potential combined with molecular dynamics. The result shows that 0.52% oxygen atom vacancies can cause a 52.5% reduction in the thermal conductivity of β-Ga2O3 [100] direction, illustrating that thermal conductivity can be observably suppressed by vacancy. Finally, by analyzing the phonon group velocity, participation ratio, and spectral energy density, the oxygen atom vacancies in β-Ga2O3 are demonstrated to lead to a significant change in harmonic and anharmonic phonon activities. The findings of this study offer crucial insights into the thermal transport properties of β-Ga2O3 and are anticipated to contribute valuable knowledge to the thermal management of power devices based on β-Ga2O3.</description><subject>Anharmonicity</subject><subject>Defects</subject><subject>Electronic devices</subject><subject>Gallium oxides</subject><subject>Group velocity</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Lattice vacancies</subject><subject>Machine learning</subject><subject>Molecular dynamics</subject><subject>Oxygen</subject><subject>Phonons</subject><subject>Tensors</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Transport properties</subject><subject>Wide bandgap semiconductors</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp90M1OGzEQwHELUZVAOfACaCUugLR0bMfO-oiiFpCouLQHTqtZfySONt5gO0F5LR6kz1TTpD30UMkjX34ajf6EnFG4oSD5Z3EDjE-kkAdkRKFR9UQqOCQjAEZrJUEekeOUFgBAJ2z8kRxxJZngjI3I8zfUcx9s1VuMwYdZjSn5lK2pfNjYlP0Msx9CVV6e2_eJS-yrHDGk1RBzNbjq51t9h-yJV68-z6sNagx6-4l8cNgne7r_T8iPr1--T-_rx6e7h-ntY60Zb3ItWGMMB2oanHSOSyUtWGq6hhnXIQhUXNumQwmd7oQT1olGguu0MWPrUPMTcrnbu4rDy7pc3C590rbvMdhhnVpOx6CYUEoVevEPXQzrGMp1RfGmlCrFirraKR2HlKJ17Sr6JcZtS6F9792Kdt-72PP9xnW3tOav_BO4gOsdSNrn3yX_s-0XyVCJCw</recordid><startdate>20241207</startdate><enddate>20241207</enddate><creator>Dong, Shilin</creator><creator>Zhang, Guangwu</creator><creator>Zhang, Guangzheng</creator><creator>Lan, Xin</creator><creator>Wang, Xinyu</creator><creator>Xin, Gongming</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2119-4655</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid><orcidid>https://orcid.org/0000-0003-1741-7091</orcidid><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0009-0005-6527-2343</orcidid></search><sort><creationdate>20241207</creationdate><title>Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy</title><author>Dong, Shilin ; Zhang, Guangwu ; Zhang, Guangzheng ; Lan, Xin ; Wang, Xinyu ; Xin, Gongming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-528dd301d8a7bf3696e0e1db82dfba05a93ce8ba60bcb5f5ef5860fbcdd4efac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Anharmonicity</topic><topic>Defects</topic><topic>Electronic devices</topic><topic>Gallium oxides</topic><topic>Group velocity</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Lattice vacancies</topic><topic>Machine learning</topic><topic>Molecular dynamics</topic><topic>Oxygen</topic><topic>Phonons</topic><topic>Tensors</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Transport properties</topic><topic>Wide bandgap semiconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Shilin</creatorcontrib><creatorcontrib>Zhang, Guangwu</creatorcontrib><creatorcontrib>Zhang, Guangzheng</creatorcontrib><creatorcontrib>Lan, Xin</creatorcontrib><creatorcontrib>Wang, Xinyu</creatorcontrib><creatorcontrib>Xin, Gongming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Shilin</au><au>Zhang, Guangwu</au><au>Zhang, Guangzheng</au><au>Lan, Xin</au><au>Wang, Xinyu</au><au>Xin, Gongming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2024-12-07</date><risdate>2024</risdate><volume>161</volume><issue>21</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>β-Ga2O3 is a promising ultra-wide bandgap semiconductor in high-power and high-frequency electronics. The low thermal conductivity of β-Ga2O3, which can be further suppressed by the intrinsic vacancy, has been a major bottleneck for improving the performance of β-Ga2O3 power devices. However, deep knowledge on the thermal transport mechanism of β-Ga2O3 with defect is still lacking now. In this work, the thermal transport of β-Ga2O3 with vacancy defects is investigated using the machine learning-assisted calculation method. First, the machine learning moment tensor potential (MTP), which can accurately describe the lattice dynamics behaviors of pristine β-Ga2O3 and solves the problem of low computational efficiency of existing computational models in β-Ga2O3 large-scale simulations, is developed for studying the thermal transport of the pristine β-Ga2O3. Then, the MTP is further developed for investigating the thermal transport of β-Ga2O3 with vacancy and the thermal conductivity of β-Ga2O3 with oxygen atom vacancies, which are evaluated by machine learning potential combined with molecular dynamics. The result shows that 0.52% oxygen atom vacancies can cause a 52.5% reduction in the thermal conductivity of β-Ga2O3 [100] direction, illustrating that thermal conductivity can be observably suppressed by vacancy. Finally, by analyzing the phonon group velocity, participation ratio, and spectral energy density, the oxygen atom vacancies in β-Ga2O3 are demonstrated to lead to a significant change in harmonic and anharmonic phonon activities. The findings of this study offer crucial insights into the thermal transport properties of β-Ga2O3 and are anticipated to contribute valuable knowledge to the thermal management of power devices based on β-Ga2O3.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39625322</pmid><doi>10.1063/5.0237656</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2119-4655</orcidid><orcidid>https://orcid.org/0000-0003-3974-0391</orcidid><orcidid>https://orcid.org/0000-0003-1741-7091</orcidid><orcidid>https://orcid.org/0000-0003-4143-334X</orcidid><orcidid>https://orcid.org/0009-0005-6527-2343</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2024-12, Vol.161 (21)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_pubmed_primary_39625322
source AIP Journals Complete
subjects Anharmonicity
Defects
Electronic devices
Gallium oxides
Group velocity
Heat conductivity
Heat transfer
Lattice vacancies
Machine learning
Molecular dynamics
Oxygen
Phonons
Tensors
Thermal conductivity
Thermal management
Transport properties
Wide bandgap semiconductors
title Machine learning-assisted investigation on the thermal transport of β-Ga2O3 with vacancy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T07%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning-assisted%20investigation%20on%20the%20thermal%20transport%20of%20%CE%B2-Ga2O3%20with%20vacancy&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Dong,%20Shilin&rft.date=2024-12-07&rft.volume=161&rft.issue=21&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0237656&rft_dat=%3Cproquest_pubme%3E3138960002%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3138960002&rft_id=info:pmid/39625322&rfr_iscdi=true