Zr-NMOF tagged with heterobifunctionalized aptamers for highly sensitive, multiplexed and rapid imaging mass cytometry
Imaging mass cytometry (IMC) permits high-dimensional single-cell spatial proteomics by harnessing mass tags to replace conventional fluorescence tags. However, the current IMC technique commonly adopts metal-chelated polymer (MCP) tags, which are limited in sensitivity, multiplicity and data acquis...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-12, Vol.16 (48), p.22283-22296 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Imaging mass cytometry (IMC) permits high-dimensional single-cell spatial proteomics by harnessing mass tags to replace conventional fluorescence tags. However, the current IMC technique commonly adopts metal-chelated polymer (MCP) tags, which are limited in sensitivity, multiplicity and data acquisition speed. Here, we demonstrate nanometal-organic framework (NMOF) tags, which could concurrently augment IMC's sensitivity, multiplicity, and acquisition speed. We designed and synthesized uniform-sized Zr-NMOFs (∼31 nm, PDI < 0.1) and then functionalized them with heterobifunctionalized aptamers containing phosphate groups and fluorescent moieties to generate Zr-NMOF_Aptamer probes. Such functionalization enabled direct ligand exchange with zirconium ions on Zr-NMOFs, thus allowing for concurrent fluorescence and mass signal acquisitions. The fluorescence signal enabled large-scale rapid imaging to quickly locate the region-of-interest, therefore significantly reducing IMC's blind scanning time and compensating for IMC's lower resolution. Meanwhile, the Zr-NMOF_Aptamer probe exhibited specific molecular recognition and a fourfold enhancement in signal amplification over the commercial MCP probe. Additionally, we showed that Zr-NMOF_Aptamer probes were compatible with commercial MCP probes for high-multiplex co-staining in IMC analysis. The Zr-NMOF_Aptamer probe represents a promising development of next-generation molecular probes for spatial proteomics with IMC.
Commercial IMC probes are limited in sensitivity. We synthesize Zr-NMOFs with aptamers to boost sensitivity and add four mass channels. Zr NMOF_Aptamer probes allow simultaneous fluorescence and IMC imaging on tissues for comprehensive analysis. |
---|---|
ISSN: | 2040-3364 2040-3372 2040-3372 |
DOI: | 10.1039/d4nr03477e |