Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy

Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2024-11, Vol.95 (11)
Hauptverfasser: Kılıç, Alper, Blaney, Giles, Tavakoli, Fatemeh, Frias, Jodee, Sassaroli, Angelo, Fantini, Sergio, Koomson, Valencia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Review of scientific instruments
container_volume 95
creator Kılıç, Alper
Blaney, Giles
Tavakoli, Fatemeh
Frias, Jodee
Sassaroli, Angelo
Fantini, Sergio
Koomson, Valencia
description Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.
doi_str_mv 10.1063/5.0227363
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39527001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3126774949</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-964617a50f3f9305e231082be59467f78dfb6384cfc28b91840852e62cb921363</originalsourceid><addsrcrecordid>eNp90MtKxDAYBeAgio6XhS8gBTcqdMyluS2HwVFBcOFlW9I0wUqb1CRF5u2NzOjChdlk83H4zwHgFME5goxc0znEmBNGdsAMQSFLzjDZBTMISVUyXokDcBjjO8yPIrQPDoikmEOIZuB1FczHZJxel60fVOeKzsUUpsG4VHx26a3QU0x-KBZP98vC-lC0k-rL2PvRFM6oUHbOBhVMW8TR6BR81H5cH4M9q_poTrb_EXhZ3Twv78qHx9v75eKh1JiIVEpWMcQVhZZYSSA1mOT7cWOorBi3XLS2YURU2mosGolEBQXFhmHdSIxy4SNwsckdg881YqqHLmrT98oZP8WaICw4zTuQTM__0Hc_BZev-1aM80pWMqvLjdK5SQzG1mPoBhXWNYL199g1rbdjZ3u2TZyawbS_8mfdDK42IOouqdR590_aF_3HhLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126774949</pqid></control><display><type>article</type><title>Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy</title><source>MEDLINE</source><source>AIP Journals Complete</source><creator>Kılıç, Alper ; Blaney, Giles ; Tavakoli, Fatemeh ; Frias, Jodee ; Sassaroli, Angelo ; Fantini, Sergio ; Koomson, Valencia</creator><creatorcontrib>Kılıç, Alper ; Blaney, Giles ; Tavakoli, Fatemeh ; Frias, Jodee ; Sassaroli, Angelo ; Fantini, Sergio ; Koomson, Valencia</creatorcontrib><description>Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.</description><identifier>ISSN: 0034-6748</identifier><identifier>ISSN: 1089-7623</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0227363</identifier><identifier>PMID: 39527001</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Application specific integrated circuits ; Calibration ; Chromophores ; Circuit boards ; Equipment Design ; Form factors ; Frequency domain analysis ; Hemoglobins - analysis ; Heterodyning ; Human tissues ; Humans ; Infrared spectra ; Infrared spectroscopy ; Near infrared radiation ; Occlusion ; Optical measurement ; Oxyhemoglobin ; Oxyhemoglobins - analysis ; Phantoms, Imaging ; Phase noise ; Printed circuits ; Spectroscopic analysis ; Spectroscopy, Near-Infrared - instrumentation ; Spectroscopy, Near-Infrared - methods ; Spectrum analysis ; Time measurement</subject><ispartof>Review of scientific instruments, 2024-11, Vol.95 (11)</ispartof><rights>Author(s)</rights><rights>2024 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c238t-964617a50f3f9305e231082be59467f78dfb6384cfc28b91840852e62cb921363</cites><orcidid>0000-0003-4233-7165 ; 0000-0002-6496-236X ; 0000-0002-2626-9441 ; 0000-0003-4043-8309 ; 0000-0001-5116-525X ; 0000-0003-3419-4547 ; 0000-0003-3792-455X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0227363$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76130</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39527001$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kılıç, Alper</creatorcontrib><creatorcontrib>Blaney, Giles</creatorcontrib><creatorcontrib>Tavakoli, Fatemeh</creatorcontrib><creatorcontrib>Frias, Jodee</creatorcontrib><creatorcontrib>Sassaroli, Angelo</creatorcontrib><creatorcontrib>Fantini, Sergio</creatorcontrib><creatorcontrib>Koomson, Valencia</creatorcontrib><title>Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.</description><subject>Application specific integrated circuits</subject><subject>Calibration</subject><subject>Chromophores</subject><subject>Circuit boards</subject><subject>Equipment Design</subject><subject>Form factors</subject><subject>Frequency domain analysis</subject><subject>Hemoglobins - analysis</subject><subject>Heterodyning</subject><subject>Human tissues</subject><subject>Humans</subject><subject>Infrared spectra</subject><subject>Infrared spectroscopy</subject><subject>Near infrared radiation</subject><subject>Occlusion</subject><subject>Optical measurement</subject><subject>Oxyhemoglobin</subject><subject>Oxyhemoglobins - analysis</subject><subject>Phantoms, Imaging</subject><subject>Phase noise</subject><subject>Printed circuits</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy, Near-Infrared - instrumentation</subject><subject>Spectroscopy, Near-Infrared - methods</subject><subject>Spectrum analysis</subject><subject>Time measurement</subject><issn>0034-6748</issn><issn>1089-7623</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90MtKxDAYBeAgio6XhS8gBTcqdMyluS2HwVFBcOFlW9I0wUqb1CRF5u2NzOjChdlk83H4zwHgFME5goxc0znEmBNGdsAMQSFLzjDZBTMISVUyXokDcBjjO8yPIrQPDoikmEOIZuB1FczHZJxel60fVOeKzsUUpsG4VHx26a3QU0x-KBZP98vC-lC0k-rL2PvRFM6oUHbOBhVMW8TR6BR81H5cH4M9q_poTrb_EXhZ3Twv78qHx9v75eKh1JiIVEpWMcQVhZZYSSA1mOT7cWOorBi3XLS2YURU2mosGolEBQXFhmHdSIxy4SNwsckdg881YqqHLmrT98oZP8WaICw4zTuQTM__0Hc_BZev-1aM80pWMqvLjdK5SQzG1mPoBhXWNYL199g1rbdjZ3u2TZyawbS_8mfdDK42IOouqdR590_aF_3HhLw</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Kılıç, Alper</creator><creator>Blaney, Giles</creator><creator>Tavakoli, Fatemeh</creator><creator>Frias, Jodee</creator><creator>Sassaroli, Angelo</creator><creator>Fantini, Sergio</creator><creator>Koomson, Valencia</creator><general>American Institute of Physics</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4233-7165</orcidid><orcidid>https://orcid.org/0000-0002-6496-236X</orcidid><orcidid>https://orcid.org/0000-0002-2626-9441</orcidid><orcidid>https://orcid.org/0000-0003-4043-8309</orcidid><orcidid>https://orcid.org/0000-0001-5116-525X</orcidid><orcidid>https://orcid.org/0000-0003-3419-4547</orcidid><orcidid>https://orcid.org/0000-0003-3792-455X</orcidid></search><sort><creationdate>20241101</creationdate><title>Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy</title><author>Kılıç, Alper ; Blaney, Giles ; Tavakoli, Fatemeh ; Frias, Jodee ; Sassaroli, Angelo ; Fantini, Sergio ; Koomson, Valencia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-964617a50f3f9305e231082be59467f78dfb6384cfc28b91840852e62cb921363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Application specific integrated circuits</topic><topic>Calibration</topic><topic>Chromophores</topic><topic>Circuit boards</topic><topic>Equipment Design</topic><topic>Form factors</topic><topic>Frequency domain analysis</topic><topic>Hemoglobins - analysis</topic><topic>Heterodyning</topic><topic>Human tissues</topic><topic>Humans</topic><topic>Infrared spectra</topic><topic>Infrared spectroscopy</topic><topic>Near infrared radiation</topic><topic>Occlusion</topic><topic>Optical measurement</topic><topic>Oxyhemoglobin</topic><topic>Oxyhemoglobins - analysis</topic><topic>Phantoms, Imaging</topic><topic>Phase noise</topic><topic>Printed circuits</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy, Near-Infrared - instrumentation</topic><topic>Spectroscopy, Near-Infrared - methods</topic><topic>Spectrum analysis</topic><topic>Time measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kılıç, Alper</creatorcontrib><creatorcontrib>Blaney, Giles</creatorcontrib><creatorcontrib>Tavakoli, Fatemeh</creatorcontrib><creatorcontrib>Frias, Jodee</creatorcontrib><creatorcontrib>Sassaroli, Angelo</creatorcontrib><creatorcontrib>Fantini, Sergio</creatorcontrib><creatorcontrib>Koomson, Valencia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kılıç, Alper</au><au>Blaney, Giles</au><au>Tavakoli, Fatemeh</au><au>Frias, Jodee</au><au>Sassaroli, Angelo</au><au>Fantini, Sergio</au><au>Koomson, Valencia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>95</volume><issue>11</issue><issn>0034-6748</issn><issn>1089-7623</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>Real-time and non-invasive measurements of tissue concentrations of oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR) are invaluable for research and clinical use. Frequency-domain near-infrared spectroscopy (FD-NIRS) enables non-invasive measurement of these chromophore concentrations in human tissue. We present a small form factor, dual-wavelength, miniaturized FD-NIRS instrument for absolute optical measurements, built around a custom application-specific integrated circuit and a dual-slope/self-calibrating (DS/SC) probe. The modulation frequency is 55 MHz, and the heterodyning technique was used for intensity and phase readout, with an acquisition rate of 0.7 Hz. The instrument consists of a 14 × 17 cm2 printed circuit board (PCB), a Raspberry Pi 4, an STM32G491 microcontroller, and the DS/SC probe. The DS/SC approach enables this instrument to be selective to deeper tissue and conduct absolute measurements without calibration. The instrument was initially validated using a tissue-mimicking solid phantom, and upon confirming its suitability for in vivo, a vascular occlusion experiment on a human subject was conducted. For the phantom experiments, an average of 0.08° phase noise and 0.10% standard deviation over the mean for the intensities was measured at a source–detector distance of 35 mm. The absorption and reduced scattering coefficients had average precisions (variation of measurement over time) of 0.5% and 0.9%, respectively, on a window of ten frames. Results from the in vivo experiment yielded the expected increase in HbO2 and HbR concentration for all measurement types tested, namely SC, DS intensity, and DS phase.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39527001</pmid><doi>10.1063/5.0227363</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4233-7165</orcidid><orcidid>https://orcid.org/0000-0002-6496-236X</orcidid><orcidid>https://orcid.org/0000-0002-2626-9441</orcidid><orcidid>https://orcid.org/0000-0003-4043-8309</orcidid><orcidid>https://orcid.org/0000-0001-5116-525X</orcidid><orcidid>https://orcid.org/0000-0003-3419-4547</orcidid><orcidid>https://orcid.org/0000-0003-3792-455X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2024-11, Vol.95 (11)
issn 0034-6748
1089-7623
1089-7623
language eng
recordid cdi_pubmed_primary_39527001
source MEDLINE; AIP Journals Complete
subjects Application specific integrated circuits
Calibration
Chromophores
Circuit boards
Equipment Design
Form factors
Frequency domain analysis
Hemoglobins - analysis
Heterodyning
Human tissues
Humans
Infrared spectra
Infrared spectroscopy
Near infrared radiation
Occlusion
Optical measurement
Oxyhemoglobin
Oxyhemoglobins - analysis
Phantoms, Imaging
Phase noise
Printed circuits
Spectroscopic analysis
Spectroscopy, Near-Infrared - instrumentation
Spectroscopy, Near-Infrared - methods
Spectrum analysis
Time measurement
title Frequency-domain instrument with custom ASIC for dual-slope near-infrared spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-domain%20instrument%20with%20custom%20ASIC%20for%20dual-slope%20near-infrared%20spectroscopy&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=K%C4%B1l%C4%B1%C3%A7,%20Alper&rft.date=2024-11-01&rft.volume=95&rft.issue=11&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0227363&rft_dat=%3Cproquest_pubme%3E3126774949%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3126774949&rft_id=info:pmid/39527001&rfr_iscdi=true