Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario

We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional ne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2024-11, Vol.PP, p.1-1
Hauptverfasser: Nader, Rafic, Autrusseau, Florent, L'Allinec, Vincent, Bourcier, Romain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on medical imaging
container_volume PP
creator Nader, Rafic
Autrusseau, Florent
L'Allinec, Vincent
Bourcier, Romain
description We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.
doi_str_mv 10.1109/TMI.2024.3492313
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39504285</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10745627</ieee_id><sourcerecordid>3125484417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1185-1e59ba06b1cc9a8dd2719e44ea13b495e12693396cb7579d29364c73279599433</originalsourceid><addsrcrecordid>eNpNkDtPwzAYRS0EglLYGRDyyJLiZxyzlVKgUisGHmKzHOcDjFIH7ASp_55AC2K6y7lnOAgdUTKilOiz-8VsxAgTIy4045RvoQGVssiYFE_baECYKjJCcraH9lN6I4QKSfQu2uNaEsEKOUDmovN15cMLtvhuFdpXaL3Djza5rrYRL5oK6nM8_bR1Z1vfBOwDtgHPQhutizZ4W-NxgC6u0jLhS2jB_WB3DoKNvjlAO8-2TnC42SF6uJreT26y-e31bDKeZ47SQmYUpC4tyUvqnLZFVTFFNQgBlvJSaAmU5ZpznbtSSaUrpnkunOJMaam14HyITtfe99h8dJBas_TJQV3bAE2XDKd9k0IIqnqUrFEXm5QiPJv36Jc2rgwl5jur6bOa76xmk7W_nGzsXbmE6u_w27EHjteAB4B_PiVkzhT_AuB9euk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3125484417</pqid></control><display><type>article</type><title>Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario</title><source>IEEE Electronic Library (IEL)</source><creator>Nader, Rafic ; Autrusseau, Florent ; L'Allinec, Vincent ; Bourcier, Romain</creator><creatorcontrib>Nader, Rafic ; Autrusseau, Florent ; L'Allinec, Vincent ; Bourcier, Romain</creatorcontrib><description>We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.</description><identifier>ISSN: 0278-0062</identifier><identifier>ISSN: 1558-254X</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2024.3492313</identifier><identifier>PMID: 39504285</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aneurysm ; Arteries ; Bifurcation ; Biomedical imaging ; Computational modeling ; Deep Learning ; Image segmentation ; IntraCranial Aneurysms detection ; Shape ; Solid modeling ; Splines (mathematics) ; Synthetic artery/bifurcation model ; Three-dimensional displays</subject><ispartof>IEEE transactions on medical imaging, 2024-11, Vol.PP, p.1-1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-2690-0029</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10745627$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10745627$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39504285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nader, Rafic</creatorcontrib><creatorcontrib>Autrusseau, Florent</creatorcontrib><creatorcontrib>L'Allinec, Vincent</creatorcontrib><creatorcontrib>Bourcier, Romain</creatorcontrib><title>Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.</description><subject>Aneurysm</subject><subject>Arteries</subject><subject>Bifurcation</subject><subject>Biomedical imaging</subject><subject>Computational modeling</subject><subject>Deep Learning</subject><subject>Image segmentation</subject><subject>IntraCranial Aneurysms detection</subject><subject>Shape</subject><subject>Solid modeling</subject><subject>Splines (mathematics)</subject><subject>Synthetic artery/bifurcation model</subject><subject>Three-dimensional displays</subject><issn>0278-0062</issn><issn>1558-254X</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAYRS0EglLYGRDyyJLiZxyzlVKgUisGHmKzHOcDjFIH7ASp_55AC2K6y7lnOAgdUTKilOiz-8VsxAgTIy4045RvoQGVssiYFE_baECYKjJCcraH9lN6I4QKSfQu2uNaEsEKOUDmovN15cMLtvhuFdpXaL3Djza5rrYRL5oK6nM8_bR1Z1vfBOwDtgHPQhutizZ4W-NxgC6u0jLhS2jB_WB3DoKNvjlAO8-2TnC42SF6uJreT26y-e31bDKeZ47SQmYUpC4tyUvqnLZFVTFFNQgBlvJSaAmU5ZpznbtSSaUrpnkunOJMaam14HyITtfe99h8dJBas_TJQV3bAE2XDKd9k0IIqnqUrFEXm5QiPJv36Jc2rgwl5jur6bOa76xmk7W_nGzsXbmE6u_w27EHjteAB4B_PiVkzhT_AuB9euk</recordid><startdate>20241106</startdate><enddate>20241106</enddate><creator>Nader, Rafic</creator><creator>Autrusseau, Florent</creator><creator>L'Allinec, Vincent</creator><creator>Bourcier, Romain</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2690-0029</orcidid></search><sort><creationdate>20241106</creationdate><title>Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario</title><author>Nader, Rafic ; Autrusseau, Florent ; L'Allinec, Vincent ; Bourcier, Romain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1185-1e59ba06b1cc9a8dd2719e44ea13b495e12693396cb7579d29364c73279599433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aneurysm</topic><topic>Arteries</topic><topic>Bifurcation</topic><topic>Biomedical imaging</topic><topic>Computational modeling</topic><topic>Deep Learning</topic><topic>Image segmentation</topic><topic>IntraCranial Aneurysms detection</topic><topic>Shape</topic><topic>Solid modeling</topic><topic>Splines (mathematics)</topic><topic>Synthetic artery/bifurcation model</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Nader, Rafic</creatorcontrib><creatorcontrib>Autrusseau, Florent</creatorcontrib><creatorcontrib>L'Allinec, Vincent</creatorcontrib><creatorcontrib>Bourcier, Romain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nader, Rafic</au><au>Autrusseau, Florent</au><au>L'Allinec, Vincent</au><au>Bourcier, Romain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2024-11-06</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0278-0062</issn><issn>1558-254X</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>We hereby present a full synthetic model, able to mimic the various constituents of the cerebral vascular tree, including the cerebral arteries, bifurcations and intracranial aneurysms. This model intends to provide a substantial dataset of brain arteries which could be used by a 3D convolutional neural network to efficiently detect Intra-Cranial Aneurysms. The cerebral aneurysms most often occur on a particular structure of the vascular tree named the Circle of Willis. Various studies have been conducted to detect and monitor the aneurysms and those based on Deep Learning achieve the best performance. Specifically, in this work, we propose a full synthetic 3D model able to mimic the brain vasculature as acquired by Magnetic Resonance Angiography, Time Of Flight principle. Among the various MRI modalities, this latter allows for a good rendering of the blood vessels and is non-invasive. Our model has been designed to simultaneously mimic the arteries' geometry, the aneurysm shape, and the background noise. The vascular tree geometry is modeled thanks to an interpolation with 3D Spline functions, and the statistical properties of the background noise is collected from angiography acquisitions and reproduced within the model. In this work, we thoroughly describe the synthetic vasculature model, we build up a neural network designed for aneurysm segmentation and detection, finally, we carry out an in-depth evaluation of the performance gap gained thanks to the synthetic model data augmentation.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39504285</pmid><doi>10.1109/TMI.2024.3492313</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2690-0029</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2024-11, Vol.PP, p.1-1
issn 0278-0062
1558-254X
1558-254X
language eng
recordid cdi_pubmed_primary_39504285
source IEEE Electronic Library (IEL)
subjects Aneurysm
Arteries
Bifurcation
Biomedical imaging
Computational modeling
Deep Learning
Image segmentation
IntraCranial Aneurysms detection
Shape
Solid modeling
Splines (mathematics)
Synthetic artery/bifurcation model
Three-dimensional displays
title Building a Synthetic Vascular Model: Evaluation in an Intracranial Aneurysms Detection Scenario
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A30%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20Synthetic%20Vascular%20Model:%20Evaluation%20in%20an%20Intracranial%20Aneurysms%20Detection%20Scenario&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Nader,%20Rafic&rft.date=2024-11-06&rft.volume=PP&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2024.3492313&rft_dat=%3Cproquest_RIE%3E3125484417%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3125484417&rft_id=info:pmid/39504285&rft_ieee_id=10745627&rfr_iscdi=true