Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis

Complementarity determining region (CDR) is a specific region in antibody molecules that binds to antigens, where a small portion of residues undergoes particularly pronounced variations. Generating CDRs with high affinity and specificity is a pivotal milestone in accelerating drug development for d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2024-11, Vol.PP, p.1-12
Hauptverfasser: Zhang, Rongchao, Huang, Yu, Lou, Yiwei, Ding, Weiping, Cao, Yongzhi, Wang, Hanpin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue
container_start_page 1
container_title IEEE transaction on neural networks and learning systems
container_volume PP
creator Zhang, Rongchao
Huang, Yu
Lou, Yiwei
Ding, Weiping
Cao, Yongzhi
Wang, Hanpin
description Complementarity determining region (CDR) is a specific region in antibody molecules that binds to antigens, where a small portion of residues undergoes particularly pronounced variations. Generating CDRs with high affinity and specificity is a pivotal milestone in accelerating drug development for daunting and unresolved diseases. However, existing approaches predominantly center on characterizing the attributes of residues through sequential generation models, thus falling short in effectively modeling the intricate spatial correlations among residues and frequently succumbing to the trap of generating sequences that exhibit a high degree of arbitrariness. In this article, we propose a novel synergistic attention-guided cascaded graph diffusion model, termed GraphCas, which offers a pathway for optimized generation of high-affinity CDRs. Our approach is the first cascaded-based graph diffusion model for CDR synthesis. Specifically, we design a graph propagation algorithm with a relation-aware synergistic attention mechanism, enabling the targeted acquisition of structural insights from diverse protein sequences and bolstering the global information representation of the graph by precisely localizing to long-range key residue sites. We design a cascaded conditional enhanced diffusion approach, providing the capability to incorporate additional control constraints into the input. Experimental results demonstrate that GraphCas can generate photo-realistic CDRs and achieve performance comparable to top-tier approaches. In particular, GraphCas reduces the RMSD by nearly 0.42 units in the H1 region and improves the ERRAT by 9.36% points in the L1 region.
doi_str_mv 10.1109/TNNLS.2024.3477248
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39499605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10742938</ieee_id><sourcerecordid>3124680959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c205t-26b3a9dca808411365286d68c3dacc778a3d9d92a22cb5ba7a1b7288000db8083</originalsourceid><addsrcrecordid>eNpNkEtLxDAYRYMojqh_QES6dNMxjz6SpVQdhVHBB7grafJ1JtKXSbqYf2_qjGI2-ULOvSEHoTOC54RgcfX29LR8nVNMkzlL8pwmfA8dUZLRmDLO9__m_GOGTp37xGFlOM0ScYhmTCRChNMRal43HdiVcd6o6Np76Lzpu3gxGg06KqRTchoWVg7r6MbU9ejCffTYa2iiurdR0bdDA23ISWv8JroBD7Y1nelW0QusJjg84dfgjDtBB7VsHJzu9mP0fnf7VtzHy-fFQ3G9jBXFqY9pVjEptJIc84QQlqWUZzrjimmpVJ5zybTQgkpKVZVWMpekyinn4Ye6Chl2jC63vYPtv0ZwvmyNU9A0soN-dCUjNMk4FqkIKN2iyvbOWajLwZpW2k1JcDmJLn9El5Pocic6hC52_WPVgv6L_GoNwPkWMADwrzFPqGCcfQNrOYOP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3124680959</pqid></control><display><type>article</type><title>Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis</title><source>IEEE Electronic Library (IEL)</source><creator>Zhang, Rongchao ; Huang, Yu ; Lou, Yiwei ; Ding, Weiping ; Cao, Yongzhi ; Wang, Hanpin</creator><creatorcontrib>Zhang, Rongchao ; Huang, Yu ; Lou, Yiwei ; Ding, Weiping ; Cao, Yongzhi ; Wang, Hanpin</creatorcontrib><description>Complementarity determining region (CDR) is a specific region in antibody molecules that binds to antigens, where a small portion of residues undergoes particularly pronounced variations. Generating CDRs with high affinity and specificity is a pivotal milestone in accelerating drug development for daunting and unresolved diseases. However, existing approaches predominantly center on characterizing the attributes of residues through sequential generation models, thus falling short in effectively modeling the intricate spatial correlations among residues and frequently succumbing to the trap of generating sequences that exhibit a high degree of arbitrariness. In this article, we propose a novel synergistic attention-guided cascaded graph diffusion model, termed GraphCas, which offers a pathway for optimized generation of high-affinity CDRs. Our approach is the first cascaded-based graph diffusion model for CDR synthesis. Specifically, we design a graph propagation algorithm with a relation-aware synergistic attention mechanism, enabling the targeted acquisition of structural insights from diverse protein sequences and bolstering the global information representation of the graph by precisely localizing to long-range key residue sites. We design a cascaded conditional enhanced diffusion approach, providing the capability to incorporate additional control constraints into the input. Experimental results demonstrate that GraphCas can generate photo-realistic CDRs and achieve performance comparable to top-tier approaches. In particular, GraphCas reduces the RMSD by nearly 0.42 units in the H1 region and improves the ERRAT by 9.36% points in the L1 region.</description><identifier>ISSN: 2162-237X</identifier><identifier>ISSN: 2162-2388</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2024.3477248</identifier><identifier>PMID: 39499605</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptation models ; Amino acids ; Antibodies ; Biological system modeling ; Cascaded diffusion model ; complementarity determining region (CDR) synthesis ; Computational modeling ; Diffusion models ; Drugs ; Predictive models ; protein drug design ; Protein engineering ; Proteins ; synergistic graph attention</subject><ispartof>IEEE transaction on neural networks and learning systems, 2024-11, Vol.PP, p.1-12</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>rcz@stu.pku.edu.cn ; caoyz@pku.edu.cn ; cyfqylyw@gmail.com ; hy@pku.edu.cn ; ding.wp@ntu.edu.cn</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10742938$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10742938$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39499605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Rongchao</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Lou, Yiwei</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Cao, Yongzhi</creatorcontrib><creatorcontrib>Wang, Hanpin</creatorcontrib><title>Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>Complementarity determining region (CDR) is a specific region in antibody molecules that binds to antigens, where a small portion of residues undergoes particularly pronounced variations. Generating CDRs with high affinity and specificity is a pivotal milestone in accelerating drug development for daunting and unresolved diseases. However, existing approaches predominantly center on characterizing the attributes of residues through sequential generation models, thus falling short in effectively modeling the intricate spatial correlations among residues and frequently succumbing to the trap of generating sequences that exhibit a high degree of arbitrariness. In this article, we propose a novel synergistic attention-guided cascaded graph diffusion model, termed GraphCas, which offers a pathway for optimized generation of high-affinity CDRs. Our approach is the first cascaded-based graph diffusion model for CDR synthesis. Specifically, we design a graph propagation algorithm with a relation-aware synergistic attention mechanism, enabling the targeted acquisition of structural insights from diverse protein sequences and bolstering the global information representation of the graph by precisely localizing to long-range key residue sites. We design a cascaded conditional enhanced diffusion approach, providing the capability to incorporate additional control constraints into the input. Experimental results demonstrate that GraphCas can generate photo-realistic CDRs and achieve performance comparable to top-tier approaches. In particular, GraphCas reduces the RMSD by nearly 0.42 units in the H1 region and improves the ERRAT by 9.36% points in the L1 region.</description><subject>Adaptation models</subject><subject>Amino acids</subject><subject>Antibodies</subject><subject>Biological system modeling</subject><subject>Cascaded diffusion model</subject><subject>complementarity determining region (CDR) synthesis</subject><subject>Computational modeling</subject><subject>Diffusion models</subject><subject>Drugs</subject><subject>Predictive models</subject><subject>protein drug design</subject><subject>Protein engineering</subject><subject>Proteins</subject><subject>synergistic graph attention</subject><issn>2162-237X</issn><issn>2162-2388</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLxDAYRYMojqh_QES6dNMxjz6SpVQdhVHBB7grafJ1JtKXSbqYf2_qjGI2-ULOvSEHoTOC54RgcfX29LR8nVNMkzlL8pwmfA8dUZLRmDLO9__m_GOGTp37xGFlOM0ScYhmTCRChNMRal43HdiVcd6o6Np76Lzpu3gxGg06KqRTchoWVg7r6MbU9ejCffTYa2iiurdR0bdDA23ISWv8JroBD7Y1nelW0QusJjg84dfgjDtBB7VsHJzu9mP0fnf7VtzHy-fFQ3G9jBXFqY9pVjEptJIc84QQlqWUZzrjimmpVJ5zybTQgkpKVZVWMpekyinn4Ye6Chl2jC63vYPtv0ZwvmyNU9A0soN-dCUjNMk4FqkIKN2iyvbOWajLwZpW2k1JcDmJLn9El5Pocic6hC52_WPVgv6L_GoNwPkWMADwrzFPqGCcfQNrOYOP</recordid><startdate>20241105</startdate><enddate>20241105</enddate><creator>Zhang, Rongchao</creator><creator>Huang, Yu</creator><creator>Lou, Yiwei</creator><creator>Ding, Weiping</creator><creator>Cao, Yongzhi</creator><creator>Wang, Hanpin</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/rcz@stu.pku.edu.cn</orcidid><orcidid>https://orcid.org/caoyz@pku.edu.cn</orcidid><orcidid>https://orcid.org/cyfqylyw@gmail.com</orcidid><orcidid>https://orcid.org/hy@pku.edu.cn</orcidid><orcidid>https://orcid.org/ding.wp@ntu.edu.cn</orcidid></search><sort><creationdate>20241105</creationdate><title>Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis</title><author>Zhang, Rongchao ; Huang, Yu ; Lou, Yiwei ; Ding, Weiping ; Cao, Yongzhi ; Wang, Hanpin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c205t-26b3a9dca808411365286d68c3dacc778a3d9d92a22cb5ba7a1b7288000db8083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptation models</topic><topic>Amino acids</topic><topic>Antibodies</topic><topic>Biological system modeling</topic><topic>Cascaded diffusion model</topic><topic>complementarity determining region (CDR) synthesis</topic><topic>Computational modeling</topic><topic>Diffusion models</topic><topic>Drugs</topic><topic>Predictive models</topic><topic>protein drug design</topic><topic>Protein engineering</topic><topic>Proteins</topic><topic>synergistic graph attention</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Rongchao</creatorcontrib><creatorcontrib>Huang, Yu</creatorcontrib><creatorcontrib>Lou, Yiwei</creatorcontrib><creatorcontrib>Ding, Weiping</creatorcontrib><creatorcontrib>Cao, Yongzhi</creatorcontrib><creatorcontrib>Wang, Hanpin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Rongchao</au><au>Huang, Yu</au><au>Lou, Yiwei</au><au>Ding, Weiping</au><au>Cao, Yongzhi</au><au>Wang, Hanpin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2024-11-05</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>2162-237X</issn><issn>2162-2388</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>Complementarity determining region (CDR) is a specific region in antibody molecules that binds to antigens, where a small portion of residues undergoes particularly pronounced variations. Generating CDRs with high affinity and specificity is a pivotal milestone in accelerating drug development for daunting and unresolved diseases. However, existing approaches predominantly center on characterizing the attributes of residues through sequential generation models, thus falling short in effectively modeling the intricate spatial correlations among residues and frequently succumbing to the trap of generating sequences that exhibit a high degree of arbitrariness. In this article, we propose a novel synergistic attention-guided cascaded graph diffusion model, termed GraphCas, which offers a pathway for optimized generation of high-affinity CDRs. Our approach is the first cascaded-based graph diffusion model for CDR synthesis. Specifically, we design a graph propagation algorithm with a relation-aware synergistic attention mechanism, enabling the targeted acquisition of structural insights from diverse protein sequences and bolstering the global information representation of the graph by precisely localizing to long-range key residue sites. We design a cascaded conditional enhanced diffusion approach, providing the capability to incorporate additional control constraints into the input. Experimental results demonstrate that GraphCas can generate photo-realistic CDRs and achieve performance comparable to top-tier approaches. In particular, GraphCas reduces the RMSD by nearly 0.42 units in the H1 region and improves the ERRAT by 9.36% points in the L1 region.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39499605</pmid><doi>10.1109/TNNLS.2024.3477248</doi><tpages>12</tpages><orcidid>https://orcid.org/rcz@stu.pku.edu.cn</orcidid><orcidid>https://orcid.org/caoyz@pku.edu.cn</orcidid><orcidid>https://orcid.org/cyfqylyw@gmail.com</orcidid><orcidid>https://orcid.org/hy@pku.edu.cn</orcidid><orcidid>https://orcid.org/ding.wp@ntu.edu.cn</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2024-11, Vol.PP, p.1-12
issn 2162-237X
2162-2388
2162-2388
language eng
recordid cdi_pubmed_primary_39499605
source IEEE Electronic Library (IEL)
subjects Adaptation models
Amino acids
Antibodies
Biological system modeling
Cascaded diffusion model
complementarity determining region (CDR) synthesis
Computational modeling
Diffusion models
Drugs
Predictive models
protein drug design
Protein engineering
Proteins
synergistic graph attention
title Synergistic Attention-Guided Cascaded Graph Diffusion Model for Complementarity Determining Region Synthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A43%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Attention-Guided%20Cascaded%20Graph%20Diffusion%20Model%20for%20Complementarity%20Determining%20Region%20Synthesis&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Zhang,%20Rongchao&rft.date=2024-11-05&rft.volume=PP&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2024.3477248&rft_dat=%3Cproquest_RIE%3E3124680959%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3124680959&rft_id=info:pmid/39499605&rft_ieee_id=10742938&rfr_iscdi=true