Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks
Joint torque prediction is crucial when investigating biomechanics, evaluating treatments, and designing powered assistive devices. Controllers in assistive technology require reference torque trajectories to set the level of assistance for a patient during rehabilitation or when aiding essential da...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on neural systems and rehabilitation engineering 2024, Vol.32, p.3977-3986 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3986 |
---|---|
container_issue | |
container_start_page | 3977 |
container_title | IEEE transactions on neural systems and rehabilitation engineering |
container_volume | 32 |
creator | Kenneth Perera, Chamalka Gopalai, Alpha. A. Gouwanda, Darwin Ahmad, Siti. A. Teh, Pei-Lee |
description | Joint torque prediction is crucial when investigating biomechanics, evaluating treatments, and designing powered assistive devices. Controllers in assistive technology require reference torque trajectories to set the level of assistance for a patient during rehabilitation or when aiding essential daily tasks such as sit-to-walk (STW). STW itself can be generalized into strategies based on individual needs and movement patterns. In this study, three long short-term memory (LSTM) neural networks were empirically trained for hip and knee torque prediction considering these STW strategies and subject anthropometry. The hip and knee are the drivers of STW, while the network architectures were selected for recognizing temporal and spatial relationships. Performance of the LSTMs were compared and evaluated against the STW strategies to accurately generate strategy-specific and user-oriented torque. As such, train and test STW data were obtained from 65 subjects across three age groups: young, middle-aged, and older adults (19-73 years). Model inputs were hip and knee angles with horizontal center of mass velocity, while windowing allowed the LSTMs to dynamically adapt to real-time changes in STW transitions. The encoder-decoder LSTM showcased optimal performance with robust recognition of temporal features. It produced significantly ( {P}\lt 0.05 ) low hip and knee root mean square error ( 0.24~\pm ~0.07 and 0.15~\pm ~0.02 Nm/kg), strong Spearman's correlation ( 93.43~\pm ~2.86 and 84.83~\pm ~2.96 %) and good intraclass correlation coefficients (greater than 0.75), demonstrating model reliability. Hence, this network predicts strategy and user oriented reference torques for personalized controllers in assistive devices, with more natural application of assistance. |
doi_str_mv | 10.1109/TNSRE.2024.3488052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39475736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10739358</ieee_id><doaj_id>oai_doaj_org_article_996df83ee61941a49688371ed697de2a</doaj_id><sourcerecordid>3122635439</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-527c2461e05f34a22387b5e4a9c941474769a11697d5e4c2fec8cccd261cc99a3</originalsourceid><addsrcrecordid>eNpNkU1vEzEQhi1E1ZbSP4AQ8pHLBn9_HFFVoNLSIpKKo-V4Z4Pb3bjYG1X993ibUHHxWKNnnpHmRegdJQtKif20ul7-vFwwwsSCC2OIZK_QKZXSNIRR8nr-c9EIzsgJelPKHSFUK6mP0Qm3QkvN1Snq2vQIGbdxXONVyn92gH9k6GKYYtriPmW8jFOzSs0vP9zj5ZT9BJsIBd-WuN3gNtVn-TvlykAe8XcYU37C17DLfqhlekz5vrxFR70fCpwf6hm6_XK5uvjWtDdfry4-t03gVE6NZDowoSgQ2XPhGeNGryUIb4MVVGihlfWUKqu72g2sh2BCCB1TNARrPT9DV3tvl_yde8hx9PnJJR_dcyPljfN5imEAZ63qesMBFK1uL6wyhmsK3WwHNrs-7l0POdWrlMmNsQQYBr-FtCuOU8YUl4LbirI9GnIqJUP_spoSNyflnpNyc1LukFQd-nDw79YjdC8j_6KpwPs9EAHgP6OuG6XhfwHXO5bT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3122635439</pqid></control><display><type>article</type><title>Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kenneth Perera, Chamalka ; Gopalai, Alpha. A. ; Gouwanda, Darwin ; Ahmad, Siti. A. ; Teh, Pei-Lee</creator><creatorcontrib>Kenneth Perera, Chamalka ; Gopalai, Alpha. A. ; Gouwanda, Darwin ; Ahmad, Siti. A. ; Teh, Pei-Lee</creatorcontrib><description><![CDATA[Joint torque prediction is crucial when investigating biomechanics, evaluating treatments, and designing powered assistive devices. Controllers in assistive technology require reference torque trajectories to set the level of assistance for a patient during rehabilitation or when aiding essential daily tasks such as sit-to-walk (STW). STW itself can be generalized into strategies based on individual needs and movement patterns. In this study, three long short-term memory (LSTM) neural networks were empirically trained for hip and knee torque prediction considering these STW strategies and subject anthropometry. The hip and knee are the drivers of STW, while the network architectures were selected for recognizing temporal and spatial relationships. Performance of the LSTMs were compared and evaluated against the STW strategies to accurately generate strategy-specific and user-oriented torque. As such, train and test STW data were obtained from 65 subjects across three age groups: young, middle-aged, and older adults (19-73 years). Model inputs were hip and knee angles with horizontal center of mass velocity, while windowing allowed the LSTMs to dynamically adapt to real-time changes in STW transitions. The encoder-decoder LSTM showcased optimal performance with robust recognition of temporal features. It produced significantly (<inline-formula> <tex-math notation="LaTeX">{P}\lt 0.05 </tex-math></inline-formula>) low hip and knee root mean square error (<inline-formula> <tex-math notation="LaTeX">0.24~\pm ~0.07 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.15~\pm ~0.02 </tex-math></inline-formula> Nm/kg), strong Spearman's correlation (<inline-formula> <tex-math notation="LaTeX">93.43~\pm ~2.86 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">84.83~\pm ~2.96 </tex-math></inline-formula>%) and good intraclass correlation coefficients (greater than 0.75), demonstrating model reliability. Hence, this network predicts strategy and user oriented reference torques for personalized controllers in assistive devices, with more natural application of assistance.]]></description><identifier>ISSN: 1534-4320</identifier><identifier>ISSN: 1558-0210</identifier><identifier>EISSN: 1558-0210</identifier><identifier>DOI: 10.1109/TNSRE.2024.3488052</identifier><identifier>PMID: 39475736</identifier><identifier>CODEN: ITNSB3</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adult ; Aged ; Algorithms ; Assistive devices ; Biological system modeling ; Biomechanical Phenomena ; Biomechanics ; CNN-LSTM ; Encoder-decoder ; Female ; Hip ; Hip Joint - physiology ; Humans ; Knee ; Knee Joint - physiology ; Long short term memory ; Lower Extremity - physiology ; Male ; Mathematical models ; Memory, Short-Term - physiology ; Middle Aged ; Neural Networks, Computer ; Predictive models ; Self-Help Devices ; Sitting Position ; strategy classification ; Torque ; torque controllers ; Training ; Walking - physiology ; Young Adult</subject><ispartof>IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3977-3986</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0362-6431 ; 0000-0002-6166-2214 ; 0000-0003-1759-0118 ; 0000-0002-9104-1224 ; 0000-0002-9107-478X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2100,4022,27921,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39475736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kenneth Perera, Chamalka</creatorcontrib><creatorcontrib>Gopalai, Alpha. A.</creatorcontrib><creatorcontrib>Gouwanda, Darwin</creatorcontrib><creatorcontrib>Ahmad, Siti. A.</creatorcontrib><creatorcontrib>Teh, Pei-Lee</creatorcontrib><title>Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks</title><title>IEEE transactions on neural systems and rehabilitation engineering</title><addtitle>TNSRE</addtitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><description><![CDATA[Joint torque prediction is crucial when investigating biomechanics, evaluating treatments, and designing powered assistive devices. Controllers in assistive technology require reference torque trajectories to set the level of assistance for a patient during rehabilitation or when aiding essential daily tasks such as sit-to-walk (STW). STW itself can be generalized into strategies based on individual needs and movement patterns. In this study, three long short-term memory (LSTM) neural networks were empirically trained for hip and knee torque prediction considering these STW strategies and subject anthropometry. The hip and knee are the drivers of STW, while the network architectures were selected for recognizing temporal and spatial relationships. Performance of the LSTMs were compared and evaluated against the STW strategies to accurately generate strategy-specific and user-oriented torque. As such, train and test STW data were obtained from 65 subjects across three age groups: young, middle-aged, and older adults (19-73 years). Model inputs were hip and knee angles with horizontal center of mass velocity, while windowing allowed the LSTMs to dynamically adapt to real-time changes in STW transitions. The encoder-decoder LSTM showcased optimal performance with robust recognition of temporal features. It produced significantly (<inline-formula> <tex-math notation="LaTeX">{P}\lt 0.05 </tex-math></inline-formula>) low hip and knee root mean square error (<inline-formula> <tex-math notation="LaTeX">0.24~\pm ~0.07 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.15~\pm ~0.02 </tex-math></inline-formula> Nm/kg), strong Spearman's correlation (<inline-formula> <tex-math notation="LaTeX">93.43~\pm ~2.86 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">84.83~\pm ~2.96 </tex-math></inline-formula>%) and good intraclass correlation coefficients (greater than 0.75), demonstrating model reliability. Hence, this network predicts strategy and user oriented reference torques for personalized controllers in assistive devices, with more natural application of assistance.]]></description><subject>Adult</subject><subject>Aged</subject><subject>Algorithms</subject><subject>Assistive devices</subject><subject>Biological system modeling</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>CNN-LSTM</subject><subject>Encoder-decoder</subject><subject>Female</subject><subject>Hip</subject><subject>Hip Joint - physiology</subject><subject>Humans</subject><subject>Knee</subject><subject>Knee Joint - physiology</subject><subject>Long short term memory</subject><subject>Lower Extremity - physiology</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Memory, Short-Term - physiology</subject><subject>Middle Aged</subject><subject>Neural Networks, Computer</subject><subject>Predictive models</subject><subject>Self-Help Devices</subject><subject>Sitting Position</subject><subject>strategy classification</subject><subject>Torque</subject><subject>torque controllers</subject><subject>Training</subject><subject>Walking - physiology</subject><subject>Young Adult</subject><issn>1534-4320</issn><issn>1558-0210</issn><issn>1558-0210</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>EIF</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1vEzEQhi1E1ZbSP4AQ8pHLBn9_HFFVoNLSIpKKo-V4Z4Pb3bjYG1X993ibUHHxWKNnnpHmRegdJQtKif20ul7-vFwwwsSCC2OIZK_QKZXSNIRR8nr-c9EIzsgJelPKHSFUK6mP0Qm3QkvN1Snq2vQIGbdxXONVyn92gH9k6GKYYtriPmW8jFOzSs0vP9zj5ZT9BJsIBd-WuN3gNtVn-TvlykAe8XcYU37C17DLfqhlekz5vrxFR70fCpwf6hm6_XK5uvjWtDdfry4-t03gVE6NZDowoSgQ2XPhGeNGryUIb4MVVGihlfWUKqu72g2sh2BCCB1TNARrPT9DV3tvl_yde8hx9PnJJR_dcyPljfN5imEAZ63qesMBFK1uL6wyhmsK3WwHNrs-7l0POdWrlMmNsQQYBr-FtCuOU8YUl4LbirI9GnIqJUP_spoSNyflnpNyc1LukFQd-nDw79YjdC8j_6KpwPs9EAHgP6OuG6XhfwHXO5bT</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Kenneth Perera, Chamalka</creator><creator>Gopalai, Alpha. A.</creator><creator>Gouwanda, Darwin</creator><creator>Ahmad, Siti. A.</creator><creator>Teh, Pei-Lee</creator><general>IEEE</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0362-6431</orcidid><orcidid>https://orcid.org/0000-0002-6166-2214</orcidid><orcidid>https://orcid.org/0000-0003-1759-0118</orcidid><orcidid>https://orcid.org/0000-0002-9104-1224</orcidid><orcidid>https://orcid.org/0000-0002-9107-478X</orcidid></search><sort><creationdate>2024</creationdate><title>Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks</title><author>Kenneth Perera, Chamalka ; Gopalai, Alpha. A. ; Gouwanda, Darwin ; Ahmad, Siti. A. ; Teh, Pei-Lee</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-527c2461e05f34a22387b5e4a9c941474769a11697d5e4c2fec8cccd261cc99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Algorithms</topic><topic>Assistive devices</topic><topic>Biological system modeling</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>CNN-LSTM</topic><topic>Encoder-decoder</topic><topic>Female</topic><topic>Hip</topic><topic>Hip Joint - physiology</topic><topic>Humans</topic><topic>Knee</topic><topic>Knee Joint - physiology</topic><topic>Long short term memory</topic><topic>Lower Extremity - physiology</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Memory, Short-Term - physiology</topic><topic>Middle Aged</topic><topic>Neural Networks, Computer</topic><topic>Predictive models</topic><topic>Self-Help Devices</topic><topic>Sitting Position</topic><topic>strategy classification</topic><topic>Torque</topic><topic>torque controllers</topic><topic>Training</topic><topic>Walking - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kenneth Perera, Chamalka</creatorcontrib><creatorcontrib>Gopalai, Alpha. A.</creatorcontrib><creatorcontrib>Gouwanda, Darwin</creatorcontrib><creatorcontrib>Ahmad, Siti. A.</creatorcontrib><creatorcontrib>Teh, Pei-Lee</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kenneth Perera, Chamalka</au><au>Gopalai, Alpha. A.</au><au>Gouwanda, Darwin</au><au>Ahmad, Siti. A.</au><au>Teh, Pei-Lee</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks</atitle><jtitle>IEEE transactions on neural systems and rehabilitation engineering</jtitle><stitle>TNSRE</stitle><addtitle>IEEE Trans Neural Syst Rehabil Eng</addtitle><date>2024</date><risdate>2024</risdate><volume>32</volume><spage>3977</spage><epage>3986</epage><pages>3977-3986</pages><issn>1534-4320</issn><issn>1558-0210</issn><eissn>1558-0210</eissn><coden>ITNSB3</coden><abstract><![CDATA[Joint torque prediction is crucial when investigating biomechanics, evaluating treatments, and designing powered assistive devices. Controllers in assistive technology require reference torque trajectories to set the level of assistance for a patient during rehabilitation or when aiding essential daily tasks such as sit-to-walk (STW). STW itself can be generalized into strategies based on individual needs and movement patterns. In this study, three long short-term memory (LSTM) neural networks were empirically trained for hip and knee torque prediction considering these STW strategies and subject anthropometry. The hip and knee are the drivers of STW, while the network architectures were selected for recognizing temporal and spatial relationships. Performance of the LSTMs were compared and evaluated against the STW strategies to accurately generate strategy-specific and user-oriented torque. As such, train and test STW data were obtained from 65 subjects across three age groups: young, middle-aged, and older adults (19-73 years). Model inputs were hip and knee angles with horizontal center of mass velocity, while windowing allowed the LSTMs to dynamically adapt to real-time changes in STW transitions. The encoder-decoder LSTM showcased optimal performance with robust recognition of temporal features. It produced significantly (<inline-formula> <tex-math notation="LaTeX">{P}\lt 0.05 </tex-math></inline-formula>) low hip and knee root mean square error (<inline-formula> <tex-math notation="LaTeX">0.24~\pm ~0.07 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">0.15~\pm ~0.02 </tex-math></inline-formula> Nm/kg), strong Spearman's correlation (<inline-formula> <tex-math notation="LaTeX">93.43~\pm ~2.86 </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">84.83~\pm ~2.96 </tex-math></inline-formula>%) and good intraclass correlation coefficients (greater than 0.75), demonstrating model reliability. Hence, this network predicts strategy and user oriented reference torques for personalized controllers in assistive devices, with more natural application of assistance.]]></abstract><cop>United States</cop><pub>IEEE</pub><pmid>39475736</pmid><doi>10.1109/TNSRE.2024.3488052</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0362-6431</orcidid><orcidid>https://orcid.org/0000-0002-6166-2214</orcidid><orcidid>https://orcid.org/0000-0003-1759-0118</orcidid><orcidid>https://orcid.org/0000-0002-9104-1224</orcidid><orcidid>https://orcid.org/0000-0002-9107-478X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1534-4320 |
ispartof | IEEE transactions on neural systems and rehabilitation engineering, 2024, Vol.32, p.3977-3986 |
issn | 1534-4320 1558-0210 1558-0210 |
language | eng |
recordid | cdi_pubmed_primary_39475736 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Adult Aged Algorithms Assistive devices Biological system modeling Biomechanical Phenomena Biomechanics CNN-LSTM Encoder-decoder Female Hip Hip Joint - physiology Humans Knee Knee Joint - physiology Long short term memory Lower Extremity - physiology Male Mathematical models Memory, Short-Term - physiology Middle Aged Neural Networks, Computer Predictive models Self-Help Devices Sitting Position strategy classification Torque torque controllers Training Walking - physiology Young Adult |
title | Lower Limb Torque Prediction for Sit-To-Walk Strategies Using Long Short-Term Memory Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A59%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lower%20Limb%20Torque%20Prediction%20for%20Sit-To-Walk%20Strategies%20Using%20Long%20Short-Term%20Memory%20Neural%20Networks&rft.jtitle=IEEE%20transactions%20on%20neural%20systems%20and%20rehabilitation%20engineering&rft.au=Kenneth%20Perera,%20Chamalka&rft.date=2024&rft.volume=32&rft.spage=3977&rft.epage=3986&rft.pages=3977-3986&rft.issn=1534-4320&rft.eissn=1558-0210&rft.coden=ITNSB3&rft_id=info:doi/10.1109/TNSRE.2024.3488052&rft_dat=%3Cproquest_pubme%3E3122635439%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3122635439&rft_id=info:pmid/39475736&rft_ieee_id=10739358&rft_doaj_id=oai_doaj_org_article_996df83ee61941a49688371ed697de2a&rfr_iscdi=true |