The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization

Aiming at the problem that the edge artifacts of Si N ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to ach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2024-10, Vol.14 (1), p.25872
Hauptverfasser: Chen, Tao, Xia, Xin, Zhou, Jianbin, Fang, Changfu, Le, Jianbo, Wu, Nanxing
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 25872
container_title Scientific reports
container_volume 14
creator Chen, Tao
Xia, Xin
Zhou, Jianbin
Fang, Changfu
Le, Jianbo
Wu, Nanxing
description Aiming at the problem that the edge artifacts of Si N ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to achieve the extraction of microcrack edge artifact features. Wavelet decomposition is used to remove noise, while wavelet reconstruction features are used to restore lost details. Creation of 2D discrete wavelet transform functional equations combining wavelet reconstruction and wavelet decomposition to improve contrast and eliminate noise in images featuring edge artifacts. For the problem of feature edge artifacts that are difficult to remove, the threshold segmentation function equation is designed to maximize the interclass variance, and the optimal threshold value is selected to remove the edge artifacts. The experimental results show that the average PSNR of the Si N ceramic bearing rolling body point, line, and surface microcrack edge artifact feature images enhanced by the method in this paper is close to 62.69 dB, and the average SSIM is about 0.77. The method in this paper improves the contrast of microcrack edge artifact features of Si N ceramic bearing rolling bodies and makes the feature extraction effect of point, line, and surface microcrack edge artifacts more complete.
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39468144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39468144</sourcerecordid><originalsourceid>FETCH-pubmed_primary_394681443</originalsourceid><addsrcrecordid>eNqFjsEKgkAURYcgUspfiPcDgo5j5DqKVm1yL-P41CnHkecE1denUOvu5izu5XAXzOeRSEOecO6xYBxv0ZSUZyLOVsxLMrHbx0L4zOQtAlYNgiSna6kc4NPRRG17MOhaW0FtCa4aEriAAIUkjVZQoiTdN0C262ZihwZ7B1NHVk2G-wiqlbMKSb_lLNywZS27EYMv12x7OuaHczg8SoNVMZA2kl7F71_yd_ABH_RHbg</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Chen, Tao ; Xia, Xin ; Zhou, Jianbin ; Fang, Changfu ; Le, Jianbo ; Wu, Nanxing</creator><creatorcontrib>Chen, Tao ; Xia, Xin ; Zhou, Jianbin ; Fang, Changfu ; Le, Jianbo ; Wu, Nanxing</creatorcontrib><description>Aiming at the problem that the edge artifacts of Si N ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to achieve the extraction of microcrack edge artifact features. Wavelet decomposition is used to remove noise, while wavelet reconstruction features are used to restore lost details. Creation of 2D discrete wavelet transform functional equations combining wavelet reconstruction and wavelet decomposition to improve contrast and eliminate noise in images featuring edge artifacts. For the problem of feature edge artifacts that are difficult to remove, the threshold segmentation function equation is designed to maximize the interclass variance, and the optimal threshold value is selected to remove the edge artifacts. The experimental results show that the average PSNR of the Si N ceramic bearing rolling body point, line, and surface microcrack edge artifact feature images enhanced by the method in this paper is close to 62.69 dB, and the average SSIM is about 0.77. The method in this paper improves the contrast of microcrack edge artifact features of Si N ceramic bearing rolling bodies and makes the feature extraction effect of point, line, and surface microcrack edge artifacts more complete.</description><identifier>EISSN: 2045-2322</identifier><identifier>PMID: 39468144</identifier><language>eng</language><publisher>England</publisher><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.25872</ispartof><rights>2024. The Author(s).</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xia, Xin</creatorcontrib><creatorcontrib>Zhou, Jianbin</creatorcontrib><creatorcontrib>Fang, Changfu</creatorcontrib><creatorcontrib>Le, Jianbo</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><title>The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Aiming at the problem that the edge artifacts of Si N ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to achieve the extraction of microcrack edge artifact features. Wavelet decomposition is used to remove noise, while wavelet reconstruction features are used to restore lost details. Creation of 2D discrete wavelet transform functional equations combining wavelet reconstruction and wavelet decomposition to improve contrast and eliminate noise in images featuring edge artifacts. For the problem of feature edge artifacts that are difficult to remove, the threshold segmentation function equation is designed to maximize the interclass variance, and the optimal threshold value is selected to remove the edge artifacts. The experimental results show that the average PSNR of the Si N ceramic bearing rolling body point, line, and surface microcrack edge artifact feature images enhanced by the method in this paper is close to 62.69 dB, and the average SSIM is about 0.77. The method in this paper improves the contrast of microcrack edge artifact features of Si N ceramic bearing rolling bodies and makes the feature extraction effect of point, line, and surface microcrack edge artifacts more complete.</description><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqFjsEKgkAURYcgUspfiPcDgo5j5DqKVm1yL-P41CnHkecE1denUOvu5izu5XAXzOeRSEOecO6xYBxv0ZSUZyLOVsxLMrHbx0L4zOQtAlYNgiSna6kc4NPRRG17MOhaW0FtCa4aEriAAIUkjVZQoiTdN0C262ZihwZ7B1NHVk2G-wiqlbMKSb_lLNywZS27EYMv12x7OuaHczg8SoNVMZA2kl7F71_yd_ABH_RHbg</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Chen, Tao</creator><creator>Xia, Xin</creator><creator>Zhou, Jianbin</creator><creator>Fang, Changfu</creator><creator>Le, Jianbo</creator><creator>Wu, Nanxing</creator><scope>NPM</scope></search><sort><creationdate>20241028</creationdate><title>The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization</title><author>Chen, Tao ; Xia, Xin ; Zhou, Jianbin ; Fang, Changfu ; Le, Jianbo ; Wu, Nanxing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_394681443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Xia, Xin</creatorcontrib><creatorcontrib>Zhou, Jianbin</creatorcontrib><creatorcontrib>Fang, Changfu</creatorcontrib><creatorcontrib>Le, Jianbo</creatorcontrib><creatorcontrib>Wu, Nanxing</creatorcontrib><collection>PubMed</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Tao</au><au>Xia, Xin</au><au>Zhou, Jianbin</au><au>Fang, Changfu</au><au>Le, Jianbo</au><au>Wu, Nanxing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization</atitle><jtitle>Scientific reports</jtitle><addtitle>Sci Rep</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>25872</spage><pages>25872-</pages><eissn>2045-2322</eissn><abstract>Aiming at the problem that the edge artifacts of Si N ceramic bearing rolling element microcracks have low contrast, contain noise, and easily merge with the background, making it difficult to segment. A method based on 2D discrete wavelet transform and Otsu threshold segmentation is designed to achieve the extraction of microcrack edge artifact features. Wavelet decomposition is used to remove noise, while wavelet reconstruction features are used to restore lost details. Creation of 2D discrete wavelet transform functional equations combining wavelet reconstruction and wavelet decomposition to improve contrast and eliminate noise in images featuring edge artifacts. For the problem of feature edge artifacts that are difficult to remove, the threshold segmentation function equation is designed to maximize the interclass variance, and the optimal threshold value is selected to remove the edge artifacts. The experimental results show that the average PSNR of the Si N ceramic bearing rolling body point, line, and surface microcrack edge artifact feature images enhanced by the method in this paper is close to 62.69 dB, and the average SSIM is about 0.77. The method in this paper improves the contrast of microcrack edge artifact features of Si N ceramic bearing rolling bodies and makes the feature extraction effect of point, line, and surface microcrack edge artifacts more complete.</abstract><cop>England</cop><pmid>39468144</pmid></addata></record>
fulltext fulltext
identifier EISSN: 2045-2322
ispartof Scientific reports, 2024-10, Vol.14 (1), p.25872
issn 2045-2322
language eng
recordid cdi_pubmed_primary_39468144
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
title The edge artifact extraction method for Si 3 N 4 ceramic bearing rolling element microcracks characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T14%3A38%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20edge%20artifact%20extraction%20method%20for%20Si%203%20N%204%20ceramic%20bearing%20rolling%20element%20microcracks%20characterization&rft.jtitle=Scientific%20reports&rft.au=Chen,%20Tao&rft.date=2024-10-28&rft.volume=14&rft.issue=1&rft.spage=25872&rft.pages=25872-&rft.eissn=2045-2322&rft_id=info:doi/&rft_dat=%3Cpubmed%3E39468144%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39468144&rfr_iscdi=true