A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression

The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the expl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2024-10, Vol.PP, p.1-11
Hauptverfasser: Dalal, Sumit, Tilwani, Deepa, Gaur, Manas, Jain, Sarika, Shalin, Valerie L., Sheth, Amit P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue
container_start_page 1
container_title IEEE journal of biomedical and health informatics
container_volume PP
creator Dalal, Sumit
Tilwani, Deepa
Gaur, Manas
Jain, Sarika
Shalin, Valerie L.
Sheth, Amit P.
description The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.
doi_str_mv 10.1109/JBHI.2024.3483577
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39418143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10721368</ieee_id><sourcerecordid>3117993126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1627-ca2a31b894c9b759e94c94d5e950bb8ab6e83efcab1c12cda9f923064c0cf7263</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGIwT5ASbG7NELuLPbj91jLQgYEj3Iudlup7imtLVbEvn3tgLGucxk8sybzEPILbApAFOPL0_L1ZQz7k2FJ4UfhhdkyCGQE86ZvDzPoLwBGTv3ybqS3UoF12QglAcSPDEkNqJxUzlHo7bFsrVVSaO6biptPmhb0ZnV27JyrTV0_l0X2pY6tYVtD3TjbLmlcWFLa3RB3xptOgrpYm8z7LboaF41dIZ1g851uTfkKteFw_Gpj8jmef4eLyfr18UqjtYTAwEPJ0ZzLSCVyjMqDX2F_eBlPiqfpanUaYBSYG50Cga4ybTKFRcs8AwzecgDMSIPx9zui689ujbZWWewKHSJ1d4lAiBUSsAvCkfU9AoazJO6sTvdHBJgSS856SUnveTkJLm7uT_F79MdZn8XZ6UdcHcELCL-Cww5iECKH9ergYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117993126</pqid></control><display><type>article</type><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><source>IEEE Electronic Library (IEL)</source><creator>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</creator><creatorcontrib>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</creatorcontrib><description>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3483577</identifier><identifier>PMID: 39418143</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Closed box ; Computer architecture ; Cross Attention ; Depression ; Explainable ; Guidelines ; Knowledge based systems ; Language models ; Manuals ; Medical treatment ; Mental health ; Ontologies ; PHQ-9 ; Unified modeling language</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-10, Vol.PP, p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5411-2230 ; 0000-0002-0021-5293 ; 0000-0002-0154-8946 ; 0000-0002-8736-2148 ; 0000-0002-7432-8506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10721368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10721368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalal, Sumit</creatorcontrib><creatorcontrib>Tilwani, Deepa</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Jain, Sarika</creatorcontrib><creatorcontrib>Shalin, Valerie L.</creatorcontrib><creatorcontrib>Sheth, Amit P.</creatorcontrib><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</description><subject>Closed box</subject><subject>Computer architecture</subject><subject>Cross Attention</subject><subject>Depression</subject><subject>Explainable</subject><subject>Guidelines</subject><subject>Knowledge based systems</subject><subject>Language models</subject><subject>Manuals</subject><subject>Medical treatment</subject><subject>Mental health</subject><subject>Ontologies</subject><subject>PHQ-9</subject><subject>Unified modeling language</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGIwT5ASbG7NELuLPbj91jLQgYEj3Iudlup7imtLVbEvn3tgLGucxk8sybzEPILbApAFOPL0_L1ZQz7k2FJ4UfhhdkyCGQE86ZvDzPoLwBGTv3ybqS3UoF12QglAcSPDEkNqJxUzlHo7bFsrVVSaO6biptPmhb0ZnV27JyrTV0_l0X2pY6tYVtD3TjbLmlcWFLa3RB3xptOgrpYm8z7LboaF41dIZ1g851uTfkKteFw_Gpj8jmef4eLyfr18UqjtYTAwEPJ0ZzLSCVyjMqDX2F_eBlPiqfpanUaYBSYG50Cga4ybTKFRcs8AwzecgDMSIPx9zui689ujbZWWewKHSJ1d4lAiBUSsAvCkfU9AoazJO6sTvdHBJgSS856SUnveTkJLm7uT_F79MdZn8XZ6UdcHcELCL-Cww5iECKH9ergYQ</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Dalal, Sumit</creator><creator>Tilwani, Deepa</creator><creator>Gaur, Manas</creator><creator>Jain, Sarika</creator><creator>Shalin, Valerie L.</creator><creator>Sheth, Amit P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-0154-8946</orcidid><orcidid>https://orcid.org/0000-0002-8736-2148</orcidid><orcidid>https://orcid.org/0000-0002-7432-8506</orcidid></search><sort><creationdate>20241017</creationdate><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><author>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1627-ca2a31b894c9b759e94c94d5e950bb8ab6e83efcab1c12cda9f923064c0cf7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Closed box</topic><topic>Computer architecture</topic><topic>Cross Attention</topic><topic>Depression</topic><topic>Explainable</topic><topic>Guidelines</topic><topic>Knowledge based systems</topic><topic>Language models</topic><topic>Manuals</topic><topic>Medical treatment</topic><topic>Mental health</topic><topic>Ontologies</topic><topic>PHQ-9</topic><topic>Unified modeling language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalal, Sumit</creatorcontrib><creatorcontrib>Tilwani, Deepa</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Jain, Sarika</creatorcontrib><creatorcontrib>Shalin, Valerie L.</creatorcontrib><creatorcontrib>Sheth, Amit P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalal, Sumit</au><au>Tilwani, Deepa</au><au>Gaur, Manas</au><au>Jain, Sarika</au><au>Shalin, Valerie L.</au><au>Sheth, Amit P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39418143</pmid><doi>10.1109/JBHI.2024.3483577</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-0154-8946</orcidid><orcidid>https://orcid.org/0000-0002-8736-2148</orcidid><orcidid>https://orcid.org/0000-0002-7432-8506</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2024-10, Vol.PP, p.1-11
issn 2168-2194
2168-2208
2168-2208
language eng
recordid cdi_pubmed_primary_39418143
source IEEE Electronic Library (IEL)
subjects Closed box
Computer architecture
Cross Attention
Depression
Explainable
Guidelines
Knowledge based systems
Language models
Manuals
Medical treatment
Mental health
Ontologies
PHQ-9
Unified modeling language
title A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross%20Attention%20Approach%20to%20Diagnostic%20Explainability%20Using%20Clinical%20Practice%20Guidelines%20for%20Depression&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Dalal,%20Sumit&rft.date=2024-10-17&rft.volume=PP&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3483577&rft_dat=%3Cproquest_RIE%3E3117993126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117993126&rft_id=info:pmid/39418143&rft_ieee_id=10721368&rfr_iscdi=true