A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression
The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the expl...
Gespeichert in:
Veröffentlicht in: | IEEE journal of biomedical and health informatics 2024-10, Vol.PP, p.1-11 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE journal of biomedical and health informatics |
container_volume | PP |
creator | Dalal, Sumit Tilwani, Deepa Gaur, Manas Jain, Sarika Shalin, Valerie L. Sheth, Amit P. |
description | The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short. |
doi_str_mv | 10.1109/JBHI.2024.3483577 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39418143</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10721368</ieee_id><sourcerecordid>3117993126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1627-ca2a31b894c9b759e94c94d5e950bb8ab6e83efcab1c12cda9f923064c0cf7263</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGIwT5ASbG7NELuLPbj91jLQgYEj3Iudlup7imtLVbEvn3tgLGucxk8sybzEPILbApAFOPL0_L1ZQz7k2FJ4UfhhdkyCGQE86ZvDzPoLwBGTv3ybqS3UoF12QglAcSPDEkNqJxUzlHo7bFsrVVSaO6biptPmhb0ZnV27JyrTV0_l0X2pY6tYVtD3TjbLmlcWFLa3RB3xptOgrpYm8z7LboaF41dIZ1g851uTfkKteFw_Gpj8jmef4eLyfr18UqjtYTAwEPJ0ZzLSCVyjMqDX2F_eBlPiqfpanUaYBSYG50Cga4ybTKFRcs8AwzecgDMSIPx9zui689ujbZWWewKHSJ1d4lAiBUSsAvCkfU9AoazJO6sTvdHBJgSS856SUnveTkJLm7uT_F79MdZn8XZ6UdcHcELCL-Cww5iECKH9ergYQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117993126</pqid></control><display><type>article</type><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><source>IEEE Electronic Library (IEL)</source><creator>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</creator><creatorcontrib>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</creatorcontrib><description>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</description><identifier>ISSN: 2168-2194</identifier><identifier>ISSN: 2168-2208</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2024.3483577</identifier><identifier>PMID: 39418143</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Closed box ; Computer architecture ; Cross Attention ; Depression ; Explainable ; Guidelines ; Knowledge based systems ; Language models ; Manuals ; Medical treatment ; Mental health ; Ontologies ; PHQ-9 ; Unified modeling language</subject><ispartof>IEEE journal of biomedical and health informatics, 2024-10, Vol.PP, p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5411-2230 ; 0000-0002-0021-5293 ; 0000-0002-0154-8946 ; 0000-0002-8736-2148 ; 0000-0002-7432-8506</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10721368$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10721368$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39418143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalal, Sumit</creatorcontrib><creatorcontrib>Tilwani, Deepa</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Jain, Sarika</creatorcontrib><creatorcontrib>Shalin, Valerie L.</creatorcontrib><creatorcontrib>Sheth, Amit P.</creatorcontrib><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</description><subject>Closed box</subject><subject>Computer architecture</subject><subject>Cross Attention</subject><subject>Depression</subject><subject>Explainable</subject><subject>Guidelines</subject><subject>Knowledge based systems</subject><subject>Language models</subject><subject>Manuals</subject><subject>Medical treatment</subject><subject>Mental health</subject><subject>Ontologies</subject><subject>PHQ-9</subject><subject>Unified modeling language</subject><issn>2168-2194</issn><issn>2168-2208</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGIwT5ASbG7NELuLPbj91jLQgYEj3Iudlup7imtLVbEvn3tgLGucxk8sybzEPILbApAFOPL0_L1ZQz7k2FJ4UfhhdkyCGQE86ZvDzPoLwBGTv3ybqS3UoF12QglAcSPDEkNqJxUzlHo7bFsrVVSaO6biptPmhb0ZnV27JyrTV0_l0X2pY6tYVtD3TjbLmlcWFLa3RB3xptOgrpYm8z7LboaF41dIZ1g851uTfkKteFw_Gpj8jmef4eLyfr18UqjtYTAwEPJ0ZzLSCVyjMqDX2F_eBlPiqfpanUaYBSYG50Cga4ybTKFRcs8AwzecgDMSIPx9zui689ujbZWWewKHSJ1d4lAiBUSsAvCkfU9AoazJO6sTvdHBJgSS856SUnveTkJLm7uT_F79MdZn8XZ6UdcHcELCL-Cww5iECKH9ergYQ</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Dalal, Sumit</creator><creator>Tilwani, Deepa</creator><creator>Gaur, Manas</creator><creator>Jain, Sarika</creator><creator>Shalin, Valerie L.</creator><creator>Sheth, Amit P.</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-0154-8946</orcidid><orcidid>https://orcid.org/0000-0002-8736-2148</orcidid><orcidid>https://orcid.org/0000-0002-7432-8506</orcidid></search><sort><creationdate>20241017</creationdate><title>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</title><author>Dalal, Sumit ; Tilwani, Deepa ; Gaur, Manas ; Jain, Sarika ; Shalin, Valerie L. ; Sheth, Amit P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1627-ca2a31b894c9b759e94c94d5e950bb8ab6e83efcab1c12cda9f923064c0cf7263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Closed box</topic><topic>Computer architecture</topic><topic>Cross Attention</topic><topic>Depression</topic><topic>Explainable</topic><topic>Guidelines</topic><topic>Knowledge based systems</topic><topic>Language models</topic><topic>Manuals</topic><topic>Medical treatment</topic><topic>Mental health</topic><topic>Ontologies</topic><topic>PHQ-9</topic><topic>Unified modeling language</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalal, Sumit</creatorcontrib><creatorcontrib>Tilwani, Deepa</creatorcontrib><creatorcontrib>Gaur, Manas</creatorcontrib><creatorcontrib>Jain, Sarika</creatorcontrib><creatorcontrib>Shalin, Valerie L.</creatorcontrib><creatorcontrib>Sheth, Amit P.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dalal, Sumit</au><au>Tilwani, Deepa</au><au>Gaur, Manas</au><au>Jain, Sarika</au><au>Shalin, Valerie L.</au><au>Sheth, Amit P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2024-10-17</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2168-2194</issn><issn>2168-2208</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>The lack of explainability in using relevant clinical knowledge hinders the adoption of artificial intelligence-powered analysis of unstructured clinical dialogue. A wealth of relevant, untapped Mental Health (MH) data is available in online communities, providing the opportunity to address the explainability problem with substantial potential impact as a screening tool for both online and offline applications. Inspired by how clinicians rely on their expertise when interacting with patients, we leverage relevant clinical knowledge to classify and explain depression-related data, reducing manual review time and engendering trust. We developed a method to enhance attention in contemporary transformer models and generate explanations for classifications that are understandable by mental health practitioners (MHPs) by incorporating external clinical knowledge. We propose a domain-general architecture called ProcesS knowledgeinfused cross ATtention (PSAT) that incorporates clinical practice guidelines (CPG) when computing attention. We transform a CPG resource focused on depression, such as the Patient Health Questionnaire (e.g. PHQ-9) and related questions, into a machine-readable ontology using SNOMED-CT. With this resource, PSAT enhances the ability of models like GPT-3.5 to generate application-relevant explanations. Evaluation of four expert-curated datasets related to depression demonstrates PSAT's applicationrelevant explanations. PSAT surpasses the performance of twelve baseline models and can provide explanations where other baselines fall short.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39418143</pmid><doi>10.1109/JBHI.2024.3483577</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5411-2230</orcidid><orcidid>https://orcid.org/0000-0002-0021-5293</orcidid><orcidid>https://orcid.org/0000-0002-0154-8946</orcidid><orcidid>https://orcid.org/0000-0002-8736-2148</orcidid><orcidid>https://orcid.org/0000-0002-7432-8506</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2194 |
ispartof | IEEE journal of biomedical and health informatics, 2024-10, Vol.PP, p.1-11 |
issn | 2168-2194 2168-2208 2168-2208 |
language | eng |
recordid | cdi_pubmed_primary_39418143 |
source | IEEE Electronic Library (IEL) |
subjects | Closed box Computer architecture Cross Attention Depression Explainable Guidelines Knowledge based systems Language models Manuals Medical treatment Mental health Ontologies PHQ-9 Unified modeling language |
title | A Cross Attention Approach to Diagnostic Explainability Using Clinical Practice Guidelines for Depression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A18%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Cross%20Attention%20Approach%20to%20Diagnostic%20Explainability%20Using%20Clinical%20Practice%20Guidelines%20for%20Depression&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Dalal,%20Sumit&rft.date=2024-10-17&rft.volume=PP&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2024.3483577&rft_dat=%3Cproquest_RIE%3E3117993126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3117993126&rft_id=info:pmid/39418143&rft_ieee_id=10721368&rfr_iscdi=true |