Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates

The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biological dynamics 2024-12, Vol.18 (1), p.2410720
Hauptverfasser: Cochran, James, Oancea, Bogdan, Pirjol, Dan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 2410720
container_title Journal of biological dynamics
container_volume 18
creator Cochran, James
Oancea, Bogdan
Pirjol, Dan
description The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on $ R_0 $ R 0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the $ r-R_0 $ r − R 0 relationship.
doi_str_mv 10.1080/17513758.2024.2410720
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_39412750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39412750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwBJAvkGLHcdzsgIo_qRISgnXk2OPWKLEr21Xp7UkJ7ZLVzDy9NzP6ELqmZErJjNxSwSkTfDbNSV5M84ISkZMTNN7rGRNleXrs-WyELmL8IoTzXJTnaMSqguaCkzGCB79x2rolTivAS3AQZLLe4WQ7wNrGFGyz-VU2TkFI0rq0w_34jgmG2NsGvwm-w_C99g5csrLFy-C3aYX7dRAv0ZmRbYSrvzpBn0-PH_OXbPH2_Dq_X2SKCkYyTUQJrOJUmJlWRrPKVIIpLmlRlJJBUxrFQDWEEWNAgK4ocEE0o6WiXHM2QXzYq4KPMYCp16F_MOxqSuo9tvqArd5jq_-w9bmbIbfeNB3oY-rAqTfcDQbrjA-d3PrQ6jrJXeuDCdIpG2v2_40fLSN-dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</creator><creatorcontrib>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</creatorcontrib><description>The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on $ R_0 $ R 0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the $ r-R_0 $ r − R 0 relationship.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2024.2410720</identifier><identifier>PMID: 39412750</identifier><language>eng</language><publisher>England: Taylor &amp; Francis</publisher><subject>92-08 ; 92-10 ; Basic Reproduction Number ; Epidemics ; Euler-Lotka equation ; generation interval distribution ; Humans ; Models, Biological ; Reproductive number ; Time Factors ; Uncertainty</subject><ispartof>Journal of biological dynamics, 2024-12, Vol.18 (1), p.2410720</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor &amp; Francis Group. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2024.2410720$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2024.2410720$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39412750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochran, James</creatorcontrib><creatorcontrib>Oancea, Bogdan</creatorcontrib><creatorcontrib>Pirjol, Dan</creatorcontrib><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><title>Journal of biological dynamics</title><addtitle>J Biol Dyn</addtitle><description>The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on $ R_0 $ R 0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the $ r-R_0 $ r − R 0 relationship.</description><subject>92-08</subject><subject>92-10</subject><subject>Basic Reproduction Number</subject><subject>Epidemics</subject><subject>Euler-Lotka equation</subject><subject>generation interval distribution</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Reproductive number</subject><subject>Time Factors</subject><subject>Uncertainty</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1OwzAQhS0EoqVwBJAvkGLHcdzsgIo_qRISgnXk2OPWKLEr21Xp7UkJ7ZLVzDy9NzP6ELqmZErJjNxSwSkTfDbNSV5M84ISkZMTNN7rGRNleXrs-WyELmL8IoTzXJTnaMSqguaCkzGCB79x2rolTivAS3AQZLLe4WQ7wNrGFGyz-VU2TkFI0rq0w_34jgmG2NsGvwm-w_C99g5csrLFy-C3aYX7dRAv0ZmRbYSrvzpBn0-PH_OXbPH2_Dq_X2SKCkYyTUQJrOJUmJlWRrPKVIIpLmlRlJJBUxrFQDWEEWNAgK4ocEE0o6WiXHM2QXzYq4KPMYCp16F_MOxqSuo9tvqArd5jq_-w9bmbIbfeNB3oY-rAqTfcDQbrjA-d3PrQ6jrJXeuDCdIpG2v2_40fLSN-dQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Cochran, James</creator><creator>Oancea, Bogdan</creator><creator>Pirjol, Dan</creator><general>Taylor &amp; Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241231</creationdate><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><author>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>92-08</topic><topic>92-10</topic><topic>Basic Reproduction Number</topic><topic>Epidemics</topic><topic>Euler-Lotka equation</topic><topic>generation interval distribution</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Reproductive number</topic><topic>Time Factors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochran, James</creatorcontrib><creatorcontrib>Oancea, Bogdan</creatorcontrib><creatorcontrib>Pirjol, Dan</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochran, James</au><au>Oancea, Bogdan</au><au>Pirjol, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</atitle><jtitle>Journal of biological dynamics</jtitle><addtitle>J Biol Dyn</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>2410720</spage><pages>2410720-</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on $ R_0 $ R 0 using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the $ r-R_0 $ r − R 0 relationship.</abstract><cop>England</cop><pub>Taylor &amp; Francis</pub><pmid>39412750</pmid><doi>10.1080/17513758.2024.2410720</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1751-3758
ispartof Journal of biological dynamics, 2024-12, Vol.18 (1), p.2410720
issn 1751-3758
1751-3766
language eng
recordid cdi_pubmed_primary_39412750
source Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 92-08
92-10
Basic Reproduction Number
Epidemics
Euler-Lotka equation
generation interval distribution
Humans
Models, Biological
Reproductive number
Time Factors
Uncertainty
title Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20generation%20time%20distribution%20uncertainty%20on%20R%200%20estimation%20from%20exponential%20growth%20rates&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Cochran,%20James&rft.date=2024-12-31&rft.volume=18&rft.issue=1&rft.spage=2410720&rft.pages=2410720-&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2024.2410720&rft_dat=%3Cpubmed_cross%3E39412750%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39412750&rfr_iscdi=true