Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates
The basic reproduction number $ R_0 $ R 0 is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating $ R_0 $ R 0 using the Euler-Lotka equation, which requires the Laplace transform of the...
Gespeichert in:
Veröffentlicht in: | Journal of biological dynamics 2024-12, Vol.18 (1), p.2410720 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 2410720 |
container_title | Journal of biological dynamics |
container_volume | 18 |
creator | Cochran, James Oancea, Bogdan Pirjol, Dan |
description | The basic reproduction number
$ R_0 $
R
0
is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating
$ R_0 $
R
0
using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on
$ R_0 $
R
0
using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the
$ r-R_0 $
r
−
R
0
relationship. |
doi_str_mv | 10.1080/17513758.2024.2410720 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmed_primary_39412750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39412750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EoqVwBJAvkGLHcdzsgIo_qRISgnXk2OPWKLEr21Xp7UkJ7ZLVzDy9NzP6ELqmZErJjNxSwSkTfDbNSV5M84ISkZMTNN7rGRNleXrs-WyELmL8IoTzXJTnaMSqguaCkzGCB79x2rolTivAS3AQZLLe4WQ7wNrGFGyz-VU2TkFI0rq0w_34jgmG2NsGvwm-w_C99g5csrLFy-C3aYX7dRAv0ZmRbYSrvzpBn0-PH_OXbPH2_Dq_X2SKCkYyTUQJrOJUmJlWRrPKVIIpLmlRlJJBUxrFQDWEEWNAgK4ocEE0o6WiXHM2QXzYq4KPMYCp16F_MOxqSuo9tvqArd5jq_-w9bmbIbfeNB3oY-rAqTfcDQbrjA-d3PrQ6jrJXeuDCdIpG2v2_40fLSN-dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><source>Taylor & Francis Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</creator><creatorcontrib>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</creatorcontrib><description>The basic reproduction number
$ R_0 $
R
0
is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating
$ R_0 $
R
0
using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on
$ R_0 $
R
0
using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the
$ r-R_0 $
r
−
R
0
relationship.</description><identifier>ISSN: 1751-3758</identifier><identifier>EISSN: 1751-3766</identifier><identifier>DOI: 10.1080/17513758.2024.2410720</identifier><identifier>PMID: 39412750</identifier><language>eng</language><publisher>England: Taylor & Francis</publisher><subject>92-08 ; 92-10 ; Basic Reproduction Number ; Epidemics ; Euler-Lotka equation ; generation interval distribution ; Humans ; Models, Biological ; Reproductive number ; Time Factors ; Uncertainty</subject><ispartof>Journal of biological dynamics, 2024-12, Vol.18 (1), p.2410720</ispartof><rights>2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.tandfonline.com/doi/pdf/10.1080/17513758.2024.2410720$$EPDF$$P50$$Ginformaworld$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.tandfonline.com/doi/full/10.1080/17513758.2024.2410720$$EHTML$$P50$$Ginformaworld$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,27479,27901,27902,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39412750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cochran, James</creatorcontrib><creatorcontrib>Oancea, Bogdan</creatorcontrib><creatorcontrib>Pirjol, Dan</creatorcontrib><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><title>Journal of biological dynamics</title><addtitle>J Biol Dyn</addtitle><description>The basic reproduction number
$ R_0 $
R
0
is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating
$ R_0 $
R
0
using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on
$ R_0 $
R
0
using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the
$ r-R_0 $
r
−
R
0
relationship.</description><subject>92-08</subject><subject>92-10</subject><subject>Basic Reproduction Number</subject><subject>Epidemics</subject><subject>Euler-Lotka equation</subject><subject>generation interval distribution</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Reproductive number</subject><subject>Time Factors</subject><subject>Uncertainty</subject><issn>1751-3758</issn><issn>1751-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNp9kE1OwzAQhS0EoqVwBJAvkGLHcdzsgIo_qRISgnXk2OPWKLEr21Xp7UkJ7ZLVzDy9NzP6ELqmZErJjNxSwSkTfDbNSV5M84ISkZMTNN7rGRNleXrs-WyELmL8IoTzXJTnaMSqguaCkzGCB79x2rolTivAS3AQZLLe4WQ7wNrGFGyz-VU2TkFI0rq0w_34jgmG2NsGvwm-w_C99g5csrLFy-C3aYX7dRAv0ZmRbYSrvzpBn0-PH_OXbPH2_Dq_X2SKCkYyTUQJrOJUmJlWRrPKVIIpLmlRlJJBUxrFQDWEEWNAgK4ocEE0o6WiXHM2QXzYq4KPMYCp16F_MOxqSuo9tvqArd5jq_-w9bmbIbfeNB3oY-rAqTfcDQbrjA-d3PrQ6jrJXeuDCdIpG2v2_40fLSN-dQ</recordid><startdate>20241231</startdate><enddate>20241231</enddate><creator>Cochran, James</creator><creator>Oancea, Bogdan</creator><creator>Pirjol, Dan</creator><general>Taylor & Francis</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241231</creationdate><title>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</title><author>Cochran, James ; Oancea, Bogdan ; Pirjol, Dan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1730-d076e39517f8dcfd39f973c5a1446a3eb6fc3ecb030ffe7ed91e570d316c15d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>92-08</topic><topic>92-10</topic><topic>Basic Reproduction Number</topic><topic>Epidemics</topic><topic>Euler-Lotka equation</topic><topic>generation interval distribution</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Reproductive number</topic><topic>Time Factors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cochran, James</creatorcontrib><creatorcontrib>Oancea, Bogdan</creatorcontrib><creatorcontrib>Pirjol, Dan</creatorcontrib><collection>Taylor & Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Journal of biological dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cochran, James</au><au>Oancea, Bogdan</au><au>Pirjol, Dan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates</atitle><jtitle>Journal of biological dynamics</jtitle><addtitle>J Biol Dyn</addtitle><date>2024-12-31</date><risdate>2024</risdate><volume>18</volume><issue>1</issue><spage>2410720</spage><pages>2410720-</pages><issn>1751-3758</issn><eissn>1751-3766</eissn><abstract>The basic reproduction number
$ R_0 $
R
0
is one of the main parameters determining the spreading of an epidemic in a population of susceptible individuals. Wallinga and Lipsitch proposed a method for estimating
$ R_0 $
R
0
using the Euler-Lotka equation, which requires the Laplace transform of the generation interval distribution. The determination of the generation time distribution is challenging, as the generation time is not directly observable. We prove upper and lower bounds on
$ R_0 $
R
0
using only the first few moments of the generation interval distributions and study the sensitivity of the bounds to these parameters. The bounds do not require the exact shape of the generation interval distribution and give robust estimates of the
$ r-R_0 $
r
−
R
0
relationship.</abstract><cop>England</cop><pub>Taylor & Francis</pub><pmid>39412750</pmid><doi>10.1080/17513758.2024.2410720</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-3758 |
ispartof | Journal of biological dynamics, 2024-12, Vol.18 (1), p.2410720 |
issn | 1751-3758 1751-3766 |
language | eng |
recordid | cdi_pubmed_primary_39412750 |
source | Taylor & Francis Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | 92-08 92-10 Basic Reproduction Number Epidemics Euler-Lotka equation generation interval distribution Humans Models, Biological Reproductive number Time Factors Uncertainty |
title | Bounding the generation time distribution uncertainty on R 0 estimation from exponential growth rates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A22%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounding%20the%20generation%20time%20distribution%20uncertainty%20on%20R%200%20estimation%20from%20exponential%20growth%20rates&rft.jtitle=Journal%20of%20biological%20dynamics&rft.au=Cochran,%20James&rft.date=2024-12-31&rft.volume=18&rft.issue=1&rft.spage=2410720&rft.pages=2410720-&rft.issn=1751-3758&rft.eissn=1751-3766&rft_id=info:doi/10.1080/17513758.2024.2410720&rft_dat=%3Cpubmed_cross%3E39412750%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39412750&rfr_iscdi=true |