Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media

The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-02, Vol.679 (Pt A), p.676
Hauptverfasser: Fan, Meihong, Liu, Lijia, Li, Yue, Gu, Fengyun, He, Xingquan, Chen, Hui
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue Pt A
container_start_page 676
container_title Journal of colloid and interface science
container_volume 679
creator Fan, Meihong
Liu, Lijia
Li, Yue
Gu, Fengyun
He, Xingquan
Chen, Hui
description The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti C T MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO /TiO heterointerface is formed in situ on the Ir@Ti C T MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO /TiO heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti C T exhibits a mass activity that is 7 times greater than that of the benchmark IrO catalyst for OER in acidic media. In addition, the /Ti C T MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti C T MXene is about 2.4 times higher than that of the IrO catalyst.
doi_str_mv 10.1016/j.jcis.2024.10.009
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39388953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39388953</sourcerecordid><originalsourceid>FETCH-pubmed_primary_393889533</originalsourceid><addsrcrecordid>eNqFzkFPwkAQBeANiREU_gAHM3-AOtu1yJ6JBg_eevBGlu0Upim7dacY-u9tjJ49veTle8lTaqkx06jXj03WeJYsx_xpLDJEO1EzjbZYPWs0U3Un0iBqXRT2Vk2NNZuNLcxMfe74eGoHqFg6SkIVvCUILsTOpZ59SwIxQMlgYAs5lHCF9w8K9GPkRNQL1DEB1TV7ptBDvA5HCkBfsb30PI45gPNcsYczVezm6qZ2rdDiN-_Vw-tLud2tusthBPsu8dmlYf_30fwLvgFbE019</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</creator><creatorcontrib>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</creatorcontrib><description>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti C T MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO /TiO heterointerface is formed in situ on the Ir@Ti C T MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO /TiO heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti C T exhibits a mass activity that is 7 times greater than that of the benchmark IrO catalyst for OER in acidic media. In addition, the /Ti C T MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti C T MXene is about 2.4 times higher than that of the IrO catalyst.</description><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.10.009</identifier><identifier>PMID: 39388953</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of colloid and interface science, 2025-02, Vol.679 (Pt A), p.676</ispartof><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Meihong</creatorcontrib><creatorcontrib>Liu, Lijia</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Gu, Fengyun</creatorcontrib><creatorcontrib>He, Xingquan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti C T MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO /TiO heterointerface is formed in situ on the Ir@Ti C T MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO /TiO heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti C T exhibits a mass activity that is 7 times greater than that of the benchmark IrO catalyst for OER in acidic media. In addition, the /Ti C T MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti C T MXene is about 2.4 times higher than that of the IrO catalyst.</description><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFzkFPwkAQBeANiREU_gAHM3-AOtu1yJ6JBg_eevBGlu0Upim7dacY-u9tjJ49veTle8lTaqkx06jXj03WeJYsx_xpLDJEO1EzjbZYPWs0U3Un0iBqXRT2Vk2NNZuNLcxMfe74eGoHqFg6SkIVvCUILsTOpZ59SwIxQMlgYAs5lHCF9w8K9GPkRNQL1DEB1TV7ptBDvA5HCkBfsb30PI45gPNcsYczVezm6qZ2rdDiN-_Vw-tLud2tusthBPsu8dmlYf_30fwLvgFbE019</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Fan, Meihong</creator><creator>Liu, Lijia</creator><creator>Li, Yue</creator><creator>Gu, Fengyun</creator><creator>He, Xingquan</creator><creator>Chen, Hui</creator><scope>NPM</scope></search><sort><creationdate>202502</creationdate><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><author>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_393889533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Meihong</creatorcontrib><creatorcontrib>Liu, Lijia</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Gu, Fengyun</creatorcontrib><creatorcontrib>He, Xingquan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><collection>PubMed</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Meihong</au><au>Liu, Lijia</au><au>Li, Yue</au><au>Gu, Fengyun</au><au>He, Xingquan</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-02</date><risdate>2025</risdate><volume>679</volume><issue>Pt A</issue><spage>676</spage><pages>676-</pages><eissn>1095-7103</eissn><abstract>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti C T MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO /TiO heterointerface is formed in situ on the Ir@Ti C T MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO /TiO heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti C T exhibits a mass activity that is 7 times greater than that of the benchmark IrO catalyst for OER in acidic media. In addition, the /Ti C T MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti C T MXene is about 2.4 times higher than that of the IrO catalyst.</abstract><cop>United States</cop><pmid>39388953</pmid><doi>10.1016/j.jcis.2024.10.009</doi></addata></record>
fulltext fulltext
identifier EISSN: 1095-7103
ispartof Journal of colloid and interface science, 2025-02, Vol.679 (Pt A), p.676
issn 1095-7103
language eng
recordid cdi_pubmed_primary_39388953
source ScienceDirect Journals (5 years ago - present)
title Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20dispersed%20Ir%20nanoparticles%20on%20Ti%203%20C%202%20T%20x%20MXene%20nanosheets%20for%20efficient%20oxygen%20evolution%20in%20acidic%20media&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Fan,%20Meihong&rft.date=2025-02&rft.volume=679&rft.issue=Pt%20A&rft.spage=676&rft.pages=676-&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.10.009&rft_dat=%3Cpubmed%3E39388953%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39388953&rfr_iscdi=true