Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media
The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization...
Gespeichert in:
Veröffentlicht in: | Journal of colloid and interface science 2025-02, Vol.679 (Pt A), p.676 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | Pt A |
container_start_page | 676 |
container_title | Journal of colloid and interface science |
container_volume | 679 |
creator | Fan, Meihong Liu, Lijia Li, Yue Gu, Fengyun He, Xingquan Chen, Hui |
description | The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti
C
T
MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO
/TiO
heterointerface is formed in situ on the Ir@Ti
C
T
MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO
/TiO
heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti
C
T
exhibits a mass activity that is 7 times greater than that of the benchmark IrO
catalyst for OER in acidic media. In addition, the /Ti
C
T
MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti
C
T
MXene is about 2.4 times higher than that of the IrO
catalyst. |
doi_str_mv | 10.1016/j.jcis.2024.10.009 |
format | Article |
fullrecord | <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39388953</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39388953</sourcerecordid><originalsourceid>FETCH-pubmed_primary_393889533</originalsourceid><addsrcrecordid>eNqFzkFPwkAQBeANiREU_gAHM3-AOtu1yJ6JBg_eevBGlu0Upim7dacY-u9tjJ49veTle8lTaqkx06jXj03WeJYsx_xpLDJEO1EzjbZYPWs0U3Un0iBqXRT2Vk2NNZuNLcxMfe74eGoHqFg6SkIVvCUILsTOpZ59SwIxQMlgYAs5lHCF9w8K9GPkRNQL1DEB1TV7ptBDvA5HCkBfsb30PI45gPNcsYczVezm6qZ2rdDiN-_Vw-tLud2tusthBPsu8dmlYf_30fwLvgFbE019</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</creator><creatorcontrib>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</creatorcontrib><description>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti
C
T
MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO
/TiO
heterointerface is formed in situ on the Ir@Ti
C
T
MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO
/TiO
heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti
C
T
exhibits a mass activity that is 7 times greater than that of the benchmark IrO
catalyst for OER in acidic media. In addition, the /Ti
C
T
MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti
C
T
MXene is about 2.4 times higher than that of the IrO
catalyst.</description><identifier>EISSN: 1095-7103</identifier><identifier>DOI: 10.1016/j.jcis.2024.10.009</identifier><identifier>PMID: 39388953</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of colloid and interface science, 2025-02, Vol.679 (Pt A), p.676</ispartof><rights>Copyright © 2024 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39388953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Meihong</creatorcontrib><creatorcontrib>Liu, Lijia</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Gu, Fengyun</creatorcontrib><creatorcontrib>He, Xingquan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><title>Journal of colloid and interface science</title><addtitle>J Colloid Interface Sci</addtitle><description>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti
C
T
MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO
/TiO
heterointerface is formed in situ on the Ir@Ti
C
T
MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO
/TiO
heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti
C
T
exhibits a mass activity that is 7 times greater than that of the benchmark IrO
catalyst for OER in acidic media. In addition, the /Ti
C
T
MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti
C
T
MXene is about 2.4 times higher than that of the IrO
catalyst.</description><issn>1095-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFzkFPwkAQBeANiREU_gAHM3-AOtu1yJ6JBg_eevBGlu0Upim7dacY-u9tjJ49veTle8lTaqkx06jXj03WeJYsx_xpLDJEO1EzjbZYPWs0U3Un0iBqXRT2Vk2NNZuNLcxMfe74eGoHqFg6SkIVvCUILsTOpZ59SwIxQMlgYAs5lHCF9w8K9GPkRNQL1DEB1TV7ptBDvA5HCkBfsb30PI45gPNcsYczVezm6qZ2rdDiN-_Vw-tLud2tusthBPsu8dmlYf_30fwLvgFbE019</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Fan, Meihong</creator><creator>Liu, Lijia</creator><creator>Li, Yue</creator><creator>Gu, Fengyun</creator><creator>He, Xingquan</creator><creator>Chen, Hui</creator><scope>NPM</scope></search><sort><creationdate>202502</creationdate><title>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</title><author>Fan, Meihong ; Liu, Lijia ; Li, Yue ; Gu, Fengyun ; He, Xingquan ; Chen, Hui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_393889533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Meihong</creatorcontrib><creatorcontrib>Liu, Lijia</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Gu, Fengyun</creatorcontrib><creatorcontrib>He, Xingquan</creatorcontrib><creatorcontrib>Chen, Hui</creatorcontrib><collection>PubMed</collection><jtitle>Journal of colloid and interface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Meihong</au><au>Liu, Lijia</au><au>Li, Yue</au><au>Gu, Fengyun</au><au>He, Xingquan</au><au>Chen, Hui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media</atitle><jtitle>Journal of colloid and interface science</jtitle><addtitle>J Colloid Interface Sci</addtitle><date>2025-02</date><risdate>2025</risdate><volume>679</volume><issue>Pt A</issue><spage>676</spage><pages>676-</pages><eissn>1095-7103</eissn><abstract>The industrialization of hydrogen production technology through polymer electrolyte membrane water splitting faces challenges due to high iridium (Ir) loading on the anode catalyst layer. While rational design of oxygen evolution reaction (OER) electrocatalysts aimed at effective iridium utilization is promising, it remains a challenging task. Herein, we present exfoliated Ti
C
T
MXene as a highly conductive and corrosion-resistant support for acidic OER. We develop an alcohol reduction method to achieve uniform and dense loading of ultrafine Ir nanoparticles on the MXene surface. The IrO
/TiO
heterointerface is formed in situ on the Ir@Ti
C
T
MXene surface, acting as a catalytically active phase for OER during electrocatalysis. The electron interactions at the IrO
/TiO
heterointerface create electron-rich Ir sites, which reduce the adsorption properties of oxygen intermediates and enhance intrinsic OER activity. Consequently, the prepared Ir@Ti
C
T
exhibits a mass activity that is 7 times greater than that of the benchmark IrO
catalyst for OER in acidic media. In addition, the /Ti
C
T
MXene support can stabilize the Ir nanoparticles, so that the stability number of Ir@Ti
C
T
MXene is about 2.4 times higher than that of the IrO
catalyst.</abstract><cop>United States</cop><pmid>39388953</pmid><doi>10.1016/j.jcis.2024.10.009</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1095-7103 |
ispartof | Journal of colloid and interface science, 2025-02, Vol.679 (Pt A), p.676 |
issn | 1095-7103 |
language | eng |
recordid | cdi_pubmed_primary_39388953 |
source | ScienceDirect Journals (5 years ago - present) |
title | Highly dispersed Ir nanoparticles on Ti 3 C 2 T x MXene nanosheets for efficient oxygen evolution in acidic media |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T00%3A37%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20dispersed%20Ir%20nanoparticles%20on%20Ti%203%20C%202%20T%20x%20MXene%20nanosheets%20for%20efficient%20oxygen%20evolution%20in%20acidic%20media&rft.jtitle=Journal%20of%20colloid%20and%20interface%20science&rft.au=Fan,%20Meihong&rft.date=2025-02&rft.volume=679&rft.issue=Pt%20A&rft.spage=676&rft.pages=676-&rft.eissn=1095-7103&rft_id=info:doi/10.1016/j.jcis.2024.10.009&rft_dat=%3Cpubmed%3E39388953%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39388953&rfr_iscdi=true |