Proton dose calculation with LSTM networks in presence of a magnetic field

To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy. 35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2024-11, Vol.69 (21), p.215019
Hauptverfasser: Radonic, Domagoj, Xiao, Fan, Wahl, Niklas, Voss, Luke, Neishabouri, Ahmad, Delopoulos, Nikolaos, Marschner, Sebastian, Corradini, Stefanie, Belka, Claus, Dedes, George, Kurz, Christopher, Landry, Guillaume
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page 215019
container_title Physics in medicine & biology
container_volume 69
creator Radonic, Domagoj
Xiao, Fan
Wahl, Niklas
Voss, Luke
Neishabouri, Ahmad
Delopoulos, Nikolaos
Marschner, Sebastian
Corradini, Stefanie
Belka, Claus
Dedes, George
Kurz, Christopher
Landry, Guillaume
description To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy. 35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power (RSP) cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model. Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB. LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.
doi_str_mv 10.1088/1361-6560/ad7f1e
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39317232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3109422273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c219t-9a4eccaa4f67aaf4cec136f8c206433d9181162d611141520e3fa944f26d747d3</originalsourceid><addsrcrecordid>eNp1kEtPwzAQhC0EoqVw54R85ECo13ac5IgqnioCiXK2jB-QksTBTlTx70mVwo3TSrMzo90PoVMgl0DyfA5MQCJSQebKZA7sHpr-SftoSgiDpIA0naCjGNeEAOSUH6IJKxhklNEpengOvvMNNj5arFWl-0p15SBsyu4DL19Wj7ix3caHz4jLBrfBRttoi73DCtfqfViWGrvSVuYYHThVRXuymzP0enO9Wtwly6fb-8XVMtEUii4pFLdaK8WdyJRyXFs93OxyTYngjJkCcgBBjQAADiklljlVcO6oMBnPDJuh87G3Df6rt7GTdRm1rSrVWN9HyYAUnFKascFKRqsOPsZgnWxDWavwLYHILUG5xSW3uORIcIic7dr7t9qav8AvssFwMRpK38q170MzPPt_3w--b3lf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3109422273</pqid></control><display><type>article</type><title>Proton dose calculation with LSTM networks in presence of a magnetic field</title><source>Institute of Physics Journals</source><creator>Radonic, Domagoj ; Xiao, Fan ; Wahl, Niklas ; Voss, Luke ; Neishabouri, Ahmad ; Delopoulos, Nikolaos ; Marschner, Sebastian ; Corradini, Stefanie ; Belka, Claus ; Dedes, George ; Kurz, Christopher ; Landry, Guillaume</creator><creatorcontrib>Radonic, Domagoj ; Xiao, Fan ; Wahl, Niklas ; Voss, Luke ; Neishabouri, Ahmad ; Delopoulos, Nikolaos ; Marschner, Sebastian ; Corradini, Stefanie ; Belka, Claus ; Dedes, George ; Kurz, Christopher ; Landry, Guillaume</creatorcontrib><description>To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy. 35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power (RSP) cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model. Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB. LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.</description><identifier>ISSN: 0031-9155</identifier><identifier>ISSN: 1361-6560</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/1361-6560/ad7f1e</identifier><identifier>PMID: 39317232</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>deep learning ; dose calculation ; LSTM ; MR-guided proton therapy ; treatment planning</subject><ispartof>Physics in medicine &amp; biology, 2024-11, Vol.69 (21), p.215019</ispartof><rights>2024 The Author(s). Published on behalf of Institute of Physics and Engineering in Medicine by IOP Publishing Ltd</rights><rights>Creative Commons Attribution license.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c219t-9a4eccaa4f67aaf4cec136f8c206433d9181162d611141520e3fa944f26d747d3</cites><orcidid>0000-0002-7502-0730 ; 0000-0001-8060-2957 ; 0000-0002-0180-7995 ; 0000-0002-1451-223X ; 0000-0003-1707-4068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1361-6560/ad7f1e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,53821,53868</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39317232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Radonic, Domagoj</creatorcontrib><creatorcontrib>Xiao, Fan</creatorcontrib><creatorcontrib>Wahl, Niklas</creatorcontrib><creatorcontrib>Voss, Luke</creatorcontrib><creatorcontrib>Neishabouri, Ahmad</creatorcontrib><creatorcontrib>Delopoulos, Nikolaos</creatorcontrib><creatorcontrib>Marschner, Sebastian</creatorcontrib><creatorcontrib>Corradini, Stefanie</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Dedes, George</creatorcontrib><creatorcontrib>Kurz, Christopher</creatorcontrib><creatorcontrib>Landry, Guillaume</creatorcontrib><title>Proton dose calculation with LSTM networks in presence of a magnetic field</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy. 35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power (RSP) cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model. Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB. LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.</description><subject>deep learning</subject><subject>dose calculation</subject><subject>LSTM</subject><subject>MR-guided proton therapy</subject><subject>treatment planning</subject><issn>0031-9155</issn><issn>1361-6560</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kEtPwzAQhC0EoqVw54R85ECo13ac5IgqnioCiXK2jB-QksTBTlTx70mVwo3TSrMzo90PoVMgl0DyfA5MQCJSQebKZA7sHpr-SftoSgiDpIA0naCjGNeEAOSUH6IJKxhklNEpengOvvMNNj5arFWl-0p15SBsyu4DL19Wj7ix3caHz4jLBrfBRttoi73DCtfqfViWGrvSVuYYHThVRXuymzP0enO9Wtwly6fb-8XVMtEUii4pFLdaK8WdyJRyXFs93OxyTYngjJkCcgBBjQAADiklljlVcO6oMBnPDJuh87G3Df6rt7GTdRm1rSrVWN9HyYAUnFKascFKRqsOPsZgnWxDWavwLYHILUG5xSW3uORIcIic7dr7t9qav8AvssFwMRpK38q170MzPPt_3w--b3lf</recordid><startdate>20241107</startdate><enddate>20241107</enddate><creator>Radonic, Domagoj</creator><creator>Xiao, Fan</creator><creator>Wahl, Niklas</creator><creator>Voss, Luke</creator><creator>Neishabouri, Ahmad</creator><creator>Delopoulos, Nikolaos</creator><creator>Marschner, Sebastian</creator><creator>Corradini, Stefanie</creator><creator>Belka, Claus</creator><creator>Dedes, George</creator><creator>Kurz, Christopher</creator><creator>Landry, Guillaume</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7502-0730</orcidid><orcidid>https://orcid.org/0000-0001-8060-2957</orcidid><orcidid>https://orcid.org/0000-0002-0180-7995</orcidid><orcidid>https://orcid.org/0000-0002-1451-223X</orcidid><orcidid>https://orcid.org/0000-0003-1707-4068</orcidid></search><sort><creationdate>20241107</creationdate><title>Proton dose calculation with LSTM networks in presence of a magnetic field</title><author>Radonic, Domagoj ; Xiao, Fan ; Wahl, Niklas ; Voss, Luke ; Neishabouri, Ahmad ; Delopoulos, Nikolaos ; Marschner, Sebastian ; Corradini, Stefanie ; Belka, Claus ; Dedes, George ; Kurz, Christopher ; Landry, Guillaume</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c219t-9a4eccaa4f67aaf4cec136f8c206433d9181162d611141520e3fa944f26d747d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>deep learning</topic><topic>dose calculation</topic><topic>LSTM</topic><topic>MR-guided proton therapy</topic><topic>treatment planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Radonic, Domagoj</creatorcontrib><creatorcontrib>Xiao, Fan</creatorcontrib><creatorcontrib>Wahl, Niklas</creatorcontrib><creatorcontrib>Voss, Luke</creatorcontrib><creatorcontrib>Neishabouri, Ahmad</creatorcontrib><creatorcontrib>Delopoulos, Nikolaos</creatorcontrib><creatorcontrib>Marschner, Sebastian</creatorcontrib><creatorcontrib>Corradini, Stefanie</creatorcontrib><creatorcontrib>Belka, Claus</creatorcontrib><creatorcontrib>Dedes, George</creatorcontrib><creatorcontrib>Kurz, Christopher</creatorcontrib><creatorcontrib>Landry, Guillaume</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Radonic, Domagoj</au><au>Xiao, Fan</au><au>Wahl, Niklas</au><au>Voss, Luke</au><au>Neishabouri, Ahmad</au><au>Delopoulos, Nikolaos</au><au>Marschner, Sebastian</au><au>Corradini, Stefanie</au><au>Belka, Claus</au><au>Dedes, George</au><au>Kurz, Christopher</au><au>Landry, Guillaume</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton dose calculation with LSTM networks in presence of a magnetic field</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2024-11-07</date><risdate>2024</risdate><volume>69</volume><issue>21</issue><spage>215019</spage><pages>215019-</pages><issn>0031-9155</issn><issn>1361-6560</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>To present a long short-term memory (LSTM) network-based dose calculation method for magnetic resonance (MR)-guided proton therapy. 35 planning computed tomography (CT) images of prostate cancer patients were collected for Monte Carlo (MC) dose calculation under a perpendicular 1.5 T magnetic field. Proton pencil beams (PB) at three energies (150, 175, and 200 MeV) were simulated (7560 PBs at each energy). A 3D relative stopping power (RSP) cuboid covering the extent of the PB dose was extracted and given as input to the LSTM model, yielding a 3D predicted PB dose. Three single-energy (SE) LSTM models were trained separately on the corresponding 150/175/200 MeV datasets and a multi-energy (ME) LSTM model with an energy embedding layer was trained on either the combined dataset with three energies or a continuous energy (CE) dataset with 1 MeV steps ranging from 125 to 200 MeV. For each model, training and validation involved 25 patients and 10 patients were for testing. Two single field uniform dose prostate treatment plans were optimized and recalculated with MC and the CE model. Test results of all PBs from the three SE models showed a mean gamma passing rate (2%/2mm, 10% dose cutoff) above 99.9% with an average center-of-mass (COM) discrepancy below 0.4 mm between predicted and simulated trajectories. The ME model showed a mean gamma passing rate exceeding 99.8% and a COM discrepancy of less than 0.5 mm at the three energies. Treatment plan recalculation by the CE model yielded gamma passing rates of 99.6% and 97.9%. The inference time of the models was 9-10 ms per PB. LSTM models for proton dose calculation in a magnetic field were developed and showed promising accuracy and efficiency for prostate cancer patients.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>39317232</pmid><doi>10.1088/1361-6560/ad7f1e</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7502-0730</orcidid><orcidid>https://orcid.org/0000-0001-8060-2957</orcidid><orcidid>https://orcid.org/0000-0002-0180-7995</orcidid><orcidid>https://orcid.org/0000-0002-1451-223X</orcidid><orcidid>https://orcid.org/0000-0003-1707-4068</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2024-11, Vol.69 (21), p.215019
issn 0031-9155
1361-6560
1361-6560
language eng
recordid cdi_pubmed_primary_39317232
source Institute of Physics Journals
subjects deep learning
dose calculation
LSTM
MR-guided proton therapy
treatment planning
title Proton dose calculation with LSTM networks in presence of a magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A21%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton%20dose%20calculation%20with%20LSTM%20networks%20in%20presence%20of%20a%20magnetic%20field&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=Radonic,%20Domagoj&rft.date=2024-11-07&rft.volume=69&rft.issue=21&rft.spage=215019&rft.pages=215019-&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/1361-6560/ad7f1e&rft_dat=%3Cproquest_pubme%3E3109422273%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3109422273&rft_id=info:pmid/39317232&rfr_iscdi=true