Generalization of CNNs on Relational Reasoning With Bar Charts
This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization p...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on visualization and computer graphics 2024-09, Vol.PP, p.1-15 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on visualization and computer graphics |
container_volume | PP |
creator | Cui, Zhenxing Chen, Lu Wang, Yunhai Haehn, Daniel Wang, Yong Pfister, Hanspeter |
description | This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties. |
doi_str_mv | 10.1109/TVCG.2024.3463800 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39298309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684131</ieee_id><sourcerecordid>3107154946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1199-d5f0fe50592bd359a3405f87281dfac3964a95a9c909f47efa2d982079a32d5e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-ps19J5iJo0CqUClL1uGyTXRtJk7qbHPTXu7VVPM3L8MwL8xBySmFMKeDl_CWfjBkwMeYi4RnAHhlSFDQGCcl-yJCmMUtYMiBH3r8DUCEyPCQDjgwzDjgkVxPTGKfr6kt3VdtErY3y2cxHIT6Z-men6xC1b5uqeYteq24Z3WgX5UvtOn9MDqyuvTnZzRF5vrud5_fx9HHykF9P44JSxLiUFqyRIJEtSi5RcwHSZinLaGl1wTERGqXGAgGtSI3VrMSMQRpIVkrDR-Ri27t27UdvfKdWlS9MXevGtL1XPLxKpcCgYUToFi1c670zVq1dtdLuU1FQG21qo01ttKmdtnBzvqvvFytT_l38egrA2RaojDH_CpNMUE75N3y1b3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107154946</pqid></control><display><type>article</type><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</creator><creatorcontrib>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</creatorcontrib><description>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3463800</identifier><identifier>PMID: 39298309</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bars ; Cognition ; Convolutional neural networks ; Data visualization ; Encoding ; generalization evaluation ; graphical perception ; relational reasioning ; Training ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-09, Vol.PP, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0092-0793 ; 0000-0003-0059-6580 ; 0000-0002-3620-2582 ; 0000-0002-2628-3876 ; 0000-0001-9144-3461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39298309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Zhenxing</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Yunhai</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</description><subject>Bars</subject><subject>Cognition</subject><subject>Convolutional neural networks</subject><subject>Data visualization</subject><subject>Encoding</subject><subject>generalization evaluation</subject><subject>graphical perception</subject><subject>relational reasioning</subject><subject>Training</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-ps19J5iJo0CqUClL1uGyTXRtJk7qbHPTXu7VVPM3L8MwL8xBySmFMKeDl_CWfjBkwMeYi4RnAHhlSFDQGCcl-yJCmMUtYMiBH3r8DUCEyPCQDjgwzDjgkVxPTGKfr6kt3VdtErY3y2cxHIT6Z-men6xC1b5uqeYteq24Z3WgX5UvtOn9MDqyuvTnZzRF5vrud5_fx9HHykF9P44JSxLiUFqyRIJEtSi5RcwHSZinLaGl1wTERGqXGAgGtSI3VrMSMQRpIVkrDR-Ri27t27UdvfKdWlS9MXevGtL1XPLxKpcCgYUToFi1c670zVq1dtdLuU1FQG21qo01ttKmdtnBzvqvvFytT_l38egrA2RaojDH_CpNMUE75N3y1b3U</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Cui, Zhenxing</creator><creator>Chen, Lu</creator><creator>Wang, Yunhai</creator><creator>Haehn, Daniel</creator><creator>Wang, Yong</creator><creator>Pfister, Hanspeter</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0092-0793</orcidid><orcidid>https://orcid.org/0000-0003-0059-6580</orcidid><orcidid>https://orcid.org/0000-0002-3620-2582</orcidid><orcidid>https://orcid.org/0000-0002-2628-3876</orcidid><orcidid>https://orcid.org/0000-0001-9144-3461</orcidid></search><sort><creationdate>20240919</creationdate><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><author>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1199-d5f0fe50592bd359a3405f87281dfac3964a95a9c909f47efa2d982079a32d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bars</topic><topic>Cognition</topic><topic>Convolutional neural networks</topic><topic>Data visualization</topic><topic>Encoding</topic><topic>generalization evaluation</topic><topic>graphical perception</topic><topic>relational reasioning</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhenxing</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Yunhai</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Zhenxing</au><au>Chen, Lu</au><au>Wang, Yunhai</au><au>Haehn, Daniel</au><au>Wang, Yong</au><au>Pfister, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of CNNs on Relational Reasoning With Bar Charts</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-09-19</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39298309</pmid><doi>10.1109/TVCG.2024.3463800</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0092-0793</orcidid><orcidid>https://orcid.org/0000-0003-0059-6580</orcidid><orcidid>https://orcid.org/0000-0002-3620-2582</orcidid><orcidid>https://orcid.org/0000-0002-2628-3876</orcidid><orcidid>https://orcid.org/0000-0001-9144-3461</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1077-2626 |
ispartof | IEEE transactions on visualization and computer graphics, 2024-09, Vol.PP, p.1-15 |
issn | 1077-2626 1941-0506 1941-0506 |
language | eng |
recordid | cdi_pubmed_primary_39298309 |
source | IEEE Electronic Library (IEL) |
subjects | Bars Cognition Convolutional neural networks Data visualization Encoding generalization evaluation graphical perception relational reasioning Training Visualization |
title | Generalization of CNNs on Relational Reasoning With Bar Charts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20CNNs%20on%20Relational%20Reasoning%20With%20Bar%20Charts&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Cui,%20Zhenxing&rft.date=2024-09-19&rft.volume=PP&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3463800&rft_dat=%3Cproquest_RIE%3E3107154946%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107154946&rft_id=info:pmid/39298309&rft_ieee_id=10684131&rfr_iscdi=true |