Generalization of CNNs on Relational Reasoning With Bar Charts

This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2024-09, Vol.PP, p.1-15
Hauptverfasser: Cui, Zhenxing, Chen, Lu, Wang, Yunhai, Haehn, Daniel, Wang, Yong, Pfister, Hanspeter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue
container_start_page 1
container_title IEEE transactions on visualization and computer graphics
container_volume PP
creator Cui, Zhenxing
Chen, Lu
Wang, Yunhai
Haehn, Daniel
Wang, Yong
Pfister, Hanspeter
description This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.
doi_str_mv 10.1109/TVCG.2024.3463800
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39298309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10684131</ieee_id><sourcerecordid>3107154946</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1199-d5f0fe50592bd359a3405f87281dfac3964a95a9c909f47efa2d982079a32d5e3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-ps19J5iJo0CqUClL1uGyTXRtJk7qbHPTXu7VVPM3L8MwL8xBySmFMKeDl_CWfjBkwMeYi4RnAHhlSFDQGCcl-yJCmMUtYMiBH3r8DUCEyPCQDjgwzDjgkVxPTGKfr6kt3VdtErY3y2cxHIT6Z-men6xC1b5uqeYteq24Z3WgX5UvtOn9MDqyuvTnZzRF5vrud5_fx9HHykF9P44JSxLiUFqyRIJEtSi5RcwHSZinLaGl1wTERGqXGAgGtSI3VrMSMQRpIVkrDR-Ri27t27UdvfKdWlS9MXevGtL1XPLxKpcCgYUToFi1c670zVq1dtdLuU1FQG21qo01ttKmdtnBzvqvvFytT_l38egrA2RaojDH_CpNMUE75N3y1b3U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3107154946</pqid></control><display><type>article</type><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><source>IEEE Electronic Library (IEL)</source><creator>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</creator><creatorcontrib>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</creatorcontrib><description>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3463800</identifier><identifier>PMID: 39298309</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Bars ; Cognition ; Convolutional neural networks ; Data visualization ; Encoding ; generalization evaluation ; graphical perception ; relational reasioning ; Training ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2024-09, Vol.PP, p.1-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-0092-0793 ; 0000-0003-0059-6580 ; 0000-0002-3620-2582 ; 0000-0002-2628-3876 ; 0000-0001-9144-3461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10684131$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10684131$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39298309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cui, Zhenxing</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Yunhai</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</description><subject>Bars</subject><subject>Cognition</subject><subject>Convolutional neural networks</subject><subject>Data visualization</subject><subject>Encoding</subject><subject>generalization evaluation</subject><subject>graphical perception</subject><subject>relational reasioning</subject><subject>Training</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AQhhdRbK3-AEEkRy-ps19J5iJo0CqUClL1uGyTXRtJk7qbHPTXu7VVPM3L8MwL8xBySmFMKeDl_CWfjBkwMeYi4RnAHhlSFDQGCcl-yJCmMUtYMiBH3r8DUCEyPCQDjgwzDjgkVxPTGKfr6kt3VdtErY3y2cxHIT6Z-men6xC1b5uqeYteq24Z3WgX5UvtOn9MDqyuvTnZzRF5vrud5_fx9HHykF9P44JSxLiUFqyRIJEtSi5RcwHSZinLaGl1wTERGqXGAgGtSI3VrMSMQRpIVkrDR-Ri27t27UdvfKdWlS9MXevGtL1XPLxKpcCgYUToFi1c670zVq1dtdLuU1FQG21qo01ttKmdtnBzvqvvFytT_l38egrA2RaojDH_CpNMUE75N3y1b3U</recordid><startdate>20240919</startdate><enddate>20240919</enddate><creator>Cui, Zhenxing</creator><creator>Chen, Lu</creator><creator>Wang, Yunhai</creator><creator>Haehn, Daniel</creator><creator>Wang, Yong</creator><creator>Pfister, Hanspeter</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0092-0793</orcidid><orcidid>https://orcid.org/0000-0003-0059-6580</orcidid><orcidid>https://orcid.org/0000-0002-3620-2582</orcidid><orcidid>https://orcid.org/0000-0002-2628-3876</orcidid><orcidid>https://orcid.org/0000-0001-9144-3461</orcidid></search><sort><creationdate>20240919</creationdate><title>Generalization of CNNs on Relational Reasoning With Bar Charts</title><author>Cui, Zhenxing ; Chen, Lu ; Wang, Yunhai ; Haehn, Daniel ; Wang, Yong ; Pfister, Hanspeter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1199-d5f0fe50592bd359a3405f87281dfac3964a95a9c909f47efa2d982079a32d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bars</topic><topic>Cognition</topic><topic>Convolutional neural networks</topic><topic>Data visualization</topic><topic>Encoding</topic><topic>generalization evaluation</topic><topic>graphical perception</topic><topic>relational reasioning</topic><topic>Training</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Zhenxing</creatorcontrib><creatorcontrib>Chen, Lu</creatorcontrib><creatorcontrib>Wang, Yunhai</creatorcontrib><creatorcontrib>Haehn, Daniel</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><creatorcontrib>Pfister, Hanspeter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cui, Zhenxing</au><au>Chen, Lu</au><au>Wang, Yunhai</au><au>Haehn, Daniel</au><au>Wang, Yong</au><au>Pfister, Hanspeter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalization of CNNs on Relational Reasoning With Bar Charts</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2024-09-19</date><risdate>2024</risdate><volume>PP</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>This paper presents a systematic study of the generalization of convolutional neural networks (CNNs) and humans on relational reasoning tasks with bar charts. We first revisit previous experiments on graphical perception and update the benchmark performance of CNNs. We then test the generalization performance of CNNs on a classic relational reasoning task: estimating bar length ratios in a bar chart, by progressively perturbing the standard visualizations. We further conduct a user study to compare the performance of CNNs and humans. Our results show that CNNs outperform humans only when the training and test data have the same visual encodings. Otherwise, they may perform worse. We also find that CNNs are sensitive to perturbations in various visual encodings, regardless of their relevance to the target bars. Yet, humans are mainly influenced by bar lengths. Our study suggests that robust relational reasoning with visualizations is challenging for CNNs. Improving CNNs' generalization performance may require training them to better recognize task-related visual properties.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39298309</pmid><doi>10.1109/TVCG.2024.3463800</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0092-0793</orcidid><orcidid>https://orcid.org/0000-0003-0059-6580</orcidid><orcidid>https://orcid.org/0000-0002-3620-2582</orcidid><orcidid>https://orcid.org/0000-0002-2628-3876</orcidid><orcidid>https://orcid.org/0000-0001-9144-3461</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2024-09, Vol.PP, p.1-15
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_pubmed_primary_39298309
source IEEE Electronic Library (IEL)
subjects Bars
Cognition
Convolutional neural networks
Data visualization
Encoding
generalization evaluation
graphical perception
relational reasioning
Training
Visualization
title Generalization of CNNs on Relational Reasoning With Bar Charts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A24%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalization%20of%20CNNs%20on%20Relational%20Reasoning%20With%20Bar%20Charts&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Cui,%20Zhenxing&rft.date=2024-09-19&rft.volume=PP&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3463800&rft_dat=%3Cproquest_RIE%3E3107154946%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3107154946&rft_id=info:pmid/39298309&rft_ieee_id=10684131&rfr_iscdi=true