Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient

Nitrous oxide (N O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N O emissions in estuarine waters. However, as an important climate factor, how temperature regulates micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2024-12, Vol.267, p.122454
Hauptverfasser: Mao, Tie-Qiang, Zhang, Yong, Ou, Ya-Fei, Li, Xiao-Fei, Zheng, Yan-Ling, Liang, Xia, Liu, Min, Hou, Li-Jun, Dong, Hong-Po
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122454
container_title Water research (Oxford)
container_volume 267
creator Mao, Tie-Qiang
Zhang, Yong
Ou, Ya-Fei
Li, Xiao-Fei
Zheng, Yan-Ling
Liang, Xia
Liu, Min
Hou, Li-Jun
Dong, Hong-Po
description Nitrous oxide (N O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (T ) for N O production rates (N OR) were higher at nearshore than offshore sites. N-labeled nitrite ( NO ) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of N-N OR increases with increasing salinity, suggesting that N O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N O, while clade II N O-reducers dominated N O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N O emissions in the system. Our findings contribute to understanding the sources of N O in estuarine waters and their response to global warming.
doi_str_mv 10.1016/j.watres.2024.122454
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmed_primary_39293343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>39293343</sourcerecordid><originalsourceid>FETCH-pubmed_primary_392933433</originalsourceid><addsrcrecordid>eNqFjrtOw0AQRVeRUBIgfxBF8wMx-4LENQJRQZM-mthja6L12prdFfLfkwJqqluco6Or1Nboymjz8nStvjELpcpq6ytjrX_2C7U2x0O9t94fV-o-pavW2lpXL9XK1bZ2zru1ak40TCSYixC03HUkFDNjCDMI9SVgpgSUckHhSDBwI-PlxuETLHzBJGNbmsxjBAxj7AEhYeDIeYZesOVb7VHddRgSbX73Qe3e306vH_upXAZqz5PwgDKf_165f4UfCWdLQQ</addsrcrecordid><sourcetype>Index Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creator><creatorcontrib>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</creatorcontrib><description>Nitrous oxide (N O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (T ) for N O production rates (N OR) were higher at nearshore than offshore sites. N-labeled nitrite ( NO ) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of N-N OR increases with increasing salinity, suggesting that N O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N O, while clade II N O-reducers dominated N O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N O emissions in the system. Our findings contribute to understanding the sources of N O in estuarine waters and their response to global warming.</description><identifier>EISSN: 1879-2448</identifier><identifier>DOI: 10.1016/j.watres.2024.122454</identifier><identifier>PMID: 39293343</identifier><language>eng</language><publisher>England</publisher><subject>Bacteria - metabolism ; Denitrification ; Estuaries ; Nitrous Oxide - metabolism ; Salinity ; Temperature</subject><ispartof>Water research (Oxford), 2024-12, Vol.267, p.122454</ispartof><rights>Copyright © 2024 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39293343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><title>Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient</title><title>Water research (Oxford)</title><addtitle>Water Res</addtitle><description>Nitrous oxide (N O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (T ) for N O production rates (N OR) were higher at nearshore than offshore sites. N-labeled nitrite ( NO ) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of N-N OR increases with increasing salinity, suggesting that N O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N O, while clade II N O-reducers dominated N O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N O emissions in the system. Our findings contribute to understanding the sources of N O in estuarine waters and their response to global warming.</description><subject>Bacteria - metabolism</subject><subject>Denitrification</subject><subject>Estuaries</subject><subject>Nitrous Oxide - metabolism</subject><subject>Salinity</subject><subject>Temperature</subject><issn>1879-2448</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFjrtOw0AQRVeRUBIgfxBF8wMx-4LENQJRQZM-mthja6L12prdFfLfkwJqqluco6Or1Nboymjz8nStvjELpcpq6ytjrX_2C7U2x0O9t94fV-o-pavW2lpXL9XK1bZ2zru1ak40TCSYixC03HUkFDNjCDMI9SVgpgSUckHhSDBwI-PlxuETLHzBJGNbmsxjBAxj7AEhYeDIeYZesOVb7VHddRgSbX73Qe3e306vH_upXAZqz5PwgDKf_165f4UfCWdLQQ</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Mao, Tie-Qiang</creator><creator>Zhang, Yong</creator><creator>Ou, Ya-Fei</creator><creator>Li, Xiao-Fei</creator><creator>Zheng, Yan-Ling</creator><creator>Liang, Xia</creator><creator>Liu, Min</creator><creator>Hou, Li-Jun</creator><creator>Dong, Hong-Po</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope></search><sort><creationdate>20241201</creationdate><title>Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient</title><author>Mao, Tie-Qiang ; Zhang, Yong ; Ou, Ya-Fei ; Li, Xiao-Fei ; Zheng, Yan-Ling ; Liang, Xia ; Liu, Min ; Hou, Li-Jun ; Dong, Hong-Po</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-pubmed_primary_392933433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Bacteria - metabolism</topic><topic>Denitrification</topic><topic>Estuaries</topic><topic>Nitrous Oxide - metabolism</topic><topic>Salinity</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, Tie-Qiang</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><creatorcontrib>Ou, Ya-Fei</creatorcontrib><creatorcontrib>Li, Xiao-Fei</creatorcontrib><creatorcontrib>Zheng, Yan-Ling</creatorcontrib><creatorcontrib>Liang, Xia</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><creatorcontrib>Hou, Li-Jun</creatorcontrib><creatorcontrib>Dong, Hong-Po</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><jtitle>Water research (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, Tie-Qiang</au><au>Zhang, Yong</au><au>Ou, Ya-Fei</au><au>Li, Xiao-Fei</au><au>Zheng, Yan-Ling</au><au>Liang, Xia</au><au>Liu, Min</au><au>Hou, Li-Jun</au><au>Dong, Hong-Po</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient</atitle><jtitle>Water research (Oxford)</jtitle><addtitle>Water Res</addtitle><date>2024-12-01</date><risdate>2024</risdate><volume>267</volume><spage>122454</spage><pages>122454-</pages><eissn>1879-2448</eissn><abstract>Nitrous oxide (N O) is atmospheric trace gas that contributes to climate change and affects stratospheric and ground-level ozone concentrations. Ammonia oxidizers and denitrifiers contribute to N O emissions in estuarine waters. However, as an important climate factor, how temperature regulates microbial N O production in estuarine water remains unclear. Here, we have employed stable isotope labeling techniques to demonstrate that the N O production in estuarine waters exhibited differential thermal response patterns between nearshore and offshore regions. The optimal temperatures (T ) for N O production rates (N OR) were higher at nearshore than offshore sites. N-labeled nitrite ( NO ) experiments revealed that at the nearshore sites dominated by ammonia-oxidizing bacteria (AOB), the thermal tolerance of N-N OR increases with increasing salinity, suggesting that N O production by AOB-driven nitrifier denitrification may be co-regulated by temperature and salinity. Metatranscriptomic and metagenomic analyses of enriched water samples revealed that the denitrification pathway of AOB is the primary source of N O, while clade II N O-reducers dominated N O consumption. Temperature regulated the expression patterns of nitrite reductase (nirK) and nitrous oxide reductase (nosZ) genes from different sources, thereby influencing N O emissions in the system. Our findings contribute to understanding the sources of N O in estuarine waters and their response to global warming.</abstract><cop>England</cop><pmid>39293343</pmid><doi>10.1016/j.watres.2024.122454</doi></addata></record>
fulltext fulltext
identifier EISSN: 1879-2448
ispartof Water research (Oxford), 2024-12, Vol.267, p.122454
issn 1879-2448
language eng
recordid cdi_pubmed_primary_39293343
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Bacteria - metabolism
Denitrification
Estuaries
Nitrous Oxide - metabolism
Salinity
Temperature
title Temperature differentially regulates estuarine microbial N 2 O production along a salinity gradient
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature%20differentially%20regulates%20estuarine%20microbial%20N%202%20O%20production%20along%20a%20salinity%20gradient&rft.jtitle=Water%20research%20(Oxford)&rft.au=Mao,%20Tie-Qiang&rft.date=2024-12-01&rft.volume=267&rft.spage=122454&rft.pages=122454-&rft.eissn=1879-2448&rft_id=info:doi/10.1016/j.watres.2024.122454&rft_dat=%3Cpubmed%3E39293343%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/39293343&rfr_iscdi=true