Aardvark: Composite Visualizations of Trees, Time-Series, and Images

How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2025-01, Vol.31 (1), p.1290-1300
Hauptverfasser: Lange, Devin, Judson-Torres, Robert, Zangle, Thomas A., Lex, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1300
container_issue 1
container_start_page 1290
container_title IEEE transactions on visualization and computer graphics
container_volume 31
creator Lange, Devin
Judson-Torres, Robert
Zangle, Thomas A.
Lex, Alexander
description How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.
doi_str_mv 10.1109/TVCG.2024.3456193
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39255114</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10670500</ieee_id><sourcerecordid>3102877455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1623-ac83cb6ed264c9ffb7d87e6d131c66073d1509bafb0e8485320f29678300bee03</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURQdRbK3-AEEkSxemvvnITMZdiVoLBRfGbsMkeZHRpKkzjaC_3oRWcfXug3Pv4hByTmFKKeibdJXMpwyYmHIRSar5ARlTLWgIEcjDPoNSIZNMjsiJ928AVIhYH5MR1yyKKBVjcjczrvw07v02SNpm03q7xWBlfWdq-222tl37oK2C1CH66yC1DYbP6OzwmHUZLBrziv6UHFWm9ni2vxPy8nCfJo_h8mm-SGbLsKCS8dAUMS9yiSWTotBVlasyVihLymkhJShe0gh0bqocMBZxxBlUTEsVc4AcEfiEXO12N6796NBvs8b6AuvarLHtfMYpsFgpEUU9Sndo4VrvHVbZxtnGuK-MQjbIywZ52SAv28vrO5f7-S5vsPxr_NrqgYsdYBHx36BUvXDgP9OScbI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102877455</pqid></control><display><type>article</type><title>Aardvark: Composite Visualizations of Trees, Time-Series, and Images</title><source>IEEE Electronic Library (IEL)</source><creator>Lange, Devin ; Judson-Torres, Robert ; Zangle, Thomas A. ; Lex, Alexander</creator><creatorcontrib>Lange, Devin ; Judson-Torres, Robert ; Zangle, Thomas A. ; Lex, Alexander</creatorcontrib><description>How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.</description><identifier>ISSN: 1077-2626</identifier><identifier>ISSN: 1941-0506</identifier><identifier>EISSN: 1941-0506</identifier><identifier>DOI: 10.1109/TVCG.2024.3456193</identifier><identifier>PMID: 39255114</identifier><identifier>CODEN: ITVGEA</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Cancer ; Cell Microscopy ; Data visualization ; Image segmentation ; Layout ; Microscopy ; Pipelines ; Vegetation ; View Composition ; Visualization</subject><ispartof>IEEE transactions on visualization and computer graphics, 2025-01, Vol.31 (1), p.1290-1300</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1623-ac83cb6ed264c9ffb7d87e6d131c66073d1509bafb0e8485320f29678300bee03</cites><orcidid>0000-0001-5899-3517 ; 0000-0002-6559-0553 ; 0000-0002-3467-0294 ; 0000-0001-6930-5468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10670500$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10670500$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39255114$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lange, Devin</creatorcontrib><creatorcontrib>Judson-Torres, Robert</creatorcontrib><creatorcontrib>Zangle, Thomas A.</creatorcontrib><creatorcontrib>Lex, Alexander</creatorcontrib><title>Aardvark: Composite Visualizations of Trees, Time-Series, and Images</title><title>IEEE transactions on visualization and computer graphics</title><addtitle>TVCG</addtitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><description>How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.</description><subject>Cancer</subject><subject>Cell Microscopy</subject><subject>Data visualization</subject><subject>Image segmentation</subject><subject>Layout</subject><subject>Microscopy</subject><subject>Pipelines</subject><subject>Vegetation</subject><subject>View Composition</subject><subject>Visualization</subject><issn>1077-2626</issn><issn>1941-0506</issn><issn>1941-0506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1Lw0AURQdRbK3-AEEkSxemvvnITMZdiVoLBRfGbsMkeZHRpKkzjaC_3oRWcfXug3Pv4hByTmFKKeibdJXMpwyYmHIRSar5ARlTLWgIEcjDPoNSIZNMjsiJ928AVIhYH5MR1yyKKBVjcjczrvw07v02SNpm03q7xWBlfWdq-222tl37oK2C1CH66yC1DYbP6OzwmHUZLBrziv6UHFWm9ni2vxPy8nCfJo_h8mm-SGbLsKCS8dAUMS9yiSWTotBVlasyVihLymkhJShe0gh0bqocMBZxxBlUTEsVc4AcEfiEXO12N6796NBvs8b6AuvarLHtfMYpsFgpEUU9Sndo4VrvHVbZxtnGuK-MQjbIywZ52SAv28vrO5f7-S5vsPxr_NrqgYsdYBHx36BUvXDgP9OScbI</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Lange, Devin</creator><creator>Judson-Torres, Robert</creator><creator>Zangle, Thomas A.</creator><creator>Lex, Alexander</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5899-3517</orcidid><orcidid>https://orcid.org/0000-0002-6559-0553</orcidid><orcidid>https://orcid.org/0000-0002-3467-0294</orcidid><orcidid>https://orcid.org/0000-0001-6930-5468</orcidid></search><sort><creationdate>202501</creationdate><title>Aardvark: Composite Visualizations of Trees, Time-Series, and Images</title><author>Lange, Devin ; Judson-Torres, Robert ; Zangle, Thomas A. ; Lex, Alexander</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1623-ac83cb6ed264c9ffb7d87e6d131c66073d1509bafb0e8485320f29678300bee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Cancer</topic><topic>Cell Microscopy</topic><topic>Data visualization</topic><topic>Image segmentation</topic><topic>Layout</topic><topic>Microscopy</topic><topic>Pipelines</topic><topic>Vegetation</topic><topic>View Composition</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lange, Devin</creatorcontrib><creatorcontrib>Judson-Torres, Robert</creatorcontrib><creatorcontrib>Zangle, Thomas A.</creatorcontrib><creatorcontrib>Lex, Alexander</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on visualization and computer graphics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lange, Devin</au><au>Judson-Torres, Robert</au><au>Zangle, Thomas A.</au><au>Lex, Alexander</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aardvark: Composite Visualizations of Trees, Time-Series, and Images</atitle><jtitle>IEEE transactions on visualization and computer graphics</jtitle><stitle>TVCG</stitle><addtitle>IEEE Trans Vis Comput Graph</addtitle><date>2025-01</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>1290</spage><epage>1300</epage><pages>1290-1300</pages><issn>1077-2626</issn><issn>1941-0506</issn><eissn>1941-0506</eissn><coden>ITVGEA</coden><abstract>How do cancer cells grow, divide, proliferate, and die? How do drugs influence these processes? These are difficult questions that we can attempt to answer with a combination of time-series microscopy experiments, classification algorithms, and data visualization. However, collecting this type of data and applying algorithms to segment and track cells and construct lineages of proliferation is error-prone; and identifying the errors can be challenging since it often requires cross-checking multiple data types. Similarly, analyzing and communicating the results necessitates synthesizing different data types into a single narrative. State-of-the-art visualization methods for such data use independent line charts, tree diagrams, and images in separate views. However, this spatial separation requires the viewer of these charts to combine the relevant pieces of data in memory. To simplify this challenging task, we describe design principles for weaving cell images, time-series data, and tree data into a cohesive visualization. Our design principles are based on choosing a primary data type that drives the layout and integrates the other data types into that layout. We then introduce Aardvark, a system that uses these principles to implement novel visualization techniques. Based on Aardvark, we demonstrate the utility of each of these approaches for discovery, communication, and data debugging in a series of case studies.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39255114</pmid><doi>10.1109/TVCG.2024.3456193</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5899-3517</orcidid><orcidid>https://orcid.org/0000-0002-6559-0553</orcidid><orcidid>https://orcid.org/0000-0002-3467-0294</orcidid><orcidid>https://orcid.org/0000-0001-6930-5468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-2626
ispartof IEEE transactions on visualization and computer graphics, 2025-01, Vol.31 (1), p.1290-1300
issn 1077-2626
1941-0506
1941-0506
language eng
recordid cdi_pubmed_primary_39255114
source IEEE Electronic Library (IEL)
subjects Cancer
Cell Microscopy
Data visualization
Image segmentation
Layout
Microscopy
Pipelines
Vegetation
View Composition
Visualization
title Aardvark: Composite Visualizations of Trees, Time-Series, and Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aardvark:%20Composite%20Visualizations%20of%20Trees,%20Time-Series,%20and%20Images&rft.jtitle=IEEE%20transactions%20on%20visualization%20and%20computer%20graphics&rft.au=Lange,%20Devin&rft.date=2025-01&rft.volume=31&rft.issue=1&rft.spage=1290&rft.epage=1300&rft.pages=1290-1300&rft.issn=1077-2626&rft.eissn=1941-0506&rft.coden=ITVGEA&rft_id=info:doi/10.1109/TVCG.2024.3456193&rft_dat=%3Cproquest_RIE%3E3102877455%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102877455&rft_id=info:pmid/39255114&rft_ieee_id=10670500&rfr_iscdi=true