Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation

The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing thresho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of the Acoustical Society of America 2024-09, Vol.156 (3), p.1674-1687
Hauptverfasser: Petersen, Erik A., Shen, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1687
container_issue 3
container_start_page 1674
container_title The Journal of the Acoustical Society of America
container_volume 156
creator Petersen, Erik A.
Shen, Yi
description The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.
doi_str_mv 10.1121/10.0028537
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39254287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102471349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QOQlwgU8COJkyWqeElFbGAdOcm4NUrsYDtI_QW-GvcBS-TF9YyO7sxchM4puaGU0duohLAi4-IATWnGSFJkLD1EU0IITdIyzyfoxPuPWGYFL4_RhJcsS1khpuj7ZeyC9gM0GjzWRgctO2zGHpxu4u9LdrqVQVuDrcLSYFBKR9YELLuldTqsejw4G2xYD4CVdViOrQ7WrXHtpDY-QI8d-MEaD3gF0mmzxGEVWyvbtRh80P12wCk6UrLzcLbXGXp_uH-bPyWL18fn-d0iaRhlIYEs5WUjasXzUta1ZDKTOWelkrUAKhQ0ND5B81YUAEIIKmpR5yXNhWyFYnyGLne-ce3PMc6veu0b6DppwI6-4pSwVFCelhG92qGNs947UNXg4rZuXVFSbbLf6D77CF_sfce6h_YP_Q07Atc7wDc6bE_-z-4He22QhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102471349</pqid></control><display><type>article</type><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Petersen, Erik A. ; Shen, Yi</creator><creatorcontrib>Petersen, Erik A. ; Shen, Yi</creatorcontrib><description>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</description><identifier>ISSN: 0001-4966</identifier><identifier>ISSN: 1520-8524</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0028537</identifier><identifier>PMID: 39254287</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustic Stimulation - methods ; Algorithms ; Animals ; Auditory Threshold - physiology ; Evoked Potentials, Auditory, Brain Stem - physiology ; Gerbillinae - physiology ; Guinea Pigs ; Hearing - physiology ; Humans ; Mice ; Reproducibility of Results</subject><ispartof>The Journal of the Acoustical Society of America, 2024-09, Vol.156 (3), p.1674-1687</ispartof><rights>Acoustical Society of America</rights><rights>2024 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</cites><orcidid>0000-0002-4486-5474 ; 0000-0003-0063-1200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0028537$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,777,781,791,1560,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39254287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Erik A.</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</description><subject>Acoustic Stimulation - methods</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Auditory Threshold - physiology</subject><subject>Evoked Potentials, Auditory, Brain Stem - physiology</subject><subject>Gerbillinae - physiology</subject><subject>Guinea Pigs</subject><subject>Hearing - physiology</subject><subject>Humans</subject><subject>Mice</subject><subject>Reproducibility of Results</subject><issn>0001-4966</issn><issn>1520-8524</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWw4QOQlwgU8COJkyWqeElFbGAdOcm4NUrsYDtI_QW-GvcBS-TF9YyO7sxchM4puaGU0duohLAi4-IATWnGSFJkLD1EU0IITdIyzyfoxPuPWGYFL4_RhJcsS1khpuj7ZeyC9gM0GjzWRgctO2zGHpxu4u9LdrqVQVuDrcLSYFBKR9YELLuldTqsejw4G2xYD4CVdViOrQ7WrXHtpDY-QI8d-MEaD3gF0mmzxGEVWyvbtRh80P12wCk6UrLzcLbXGXp_uH-bPyWL18fn-d0iaRhlIYEs5WUjasXzUta1ZDKTOWelkrUAKhQ0ND5B81YUAEIIKmpR5yXNhWyFYnyGLne-ce3PMc6veu0b6DppwI6-4pSwVFCelhG92qGNs947UNXg4rZuXVFSbbLf6D77CF_sfce6h_YP_Q07Atc7wDc6bE_-z-4He22QhA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Petersen, Erik A.</creator><creator>Shen, Yi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4486-5474</orcidid><orcidid>https://orcid.org/0000-0003-0063-1200</orcidid></search><sort><creationdate>202409</creationdate><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><author>Petersen, Erik A. ; Shen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Auditory Threshold - physiology</topic><topic>Evoked Potentials, Auditory, Brain Stem - physiology</topic><topic>Gerbillinae - physiology</topic><topic>Guinea Pigs</topic><topic>Hearing - physiology</topic><topic>Humans</topic><topic>Mice</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Erik A.</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Erik A.</au><au>Shen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-09</date><risdate>2024</risdate><volume>156</volume><issue>3</issue><spage>1674</spage><epage>1687</epage><pages>1674-1687</pages><issn>0001-4966</issn><issn>1520-8524</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</abstract><cop>United States</cop><pmid>39254287</pmid><doi>10.1121/10.0028537</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4486-5474</orcidid><orcidid>https://orcid.org/0000-0003-0063-1200</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-4966
ispartof The Journal of the Acoustical Society of America, 2024-09, Vol.156 (3), p.1674-1687
issn 0001-4966
1520-8524
1520-8524
language eng
recordid cdi_pubmed_primary_39254287
source MEDLINE; AIP Journals Complete; AIP Acoustical Society of America
subjects Acoustic Stimulation - methods
Algorithms
Animals
Auditory Threshold - physiology
Evoked Potentials, Auditory, Brain Stem - physiology
Gerbillinae - physiology
Guinea Pigs
Hearing - physiology
Humans
Mice
Reproducibility of Results
title Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispecies%20initial%20numerical%20validation%20of%20an%20efficient%20algorithm%20prototype%20for%20auditory%20brainstem%20response%20hearing%20threshold%20estimation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Petersen,%20Erik%20A.&rft.date=2024-09&rft.volume=156&rft.issue=3&rft.spage=1674&rft.epage=1687&rft.pages=1674-1687&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0028537&rft_dat=%3Cproquest_pubme%3E3102471349%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102471349&rft_id=info:pmid/39254287&rfr_iscdi=true