Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation
The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing thresho...
Gespeichert in:
Veröffentlicht in: | The Journal of the Acoustical Society of America 2024-09, Vol.156 (3), p.1674-1687 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1687 |
---|---|
container_issue | 3 |
container_start_page | 1674 |
container_title | The Journal of the Acoustical Society of America |
container_volume | 156 |
creator | Petersen, Erik A. Shen, Yi |
description | The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation. |
doi_str_mv | 10.1121/10.0028537 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39254287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102471349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QOQlwgU8COJkyWqeElFbGAdOcm4NUrsYDtI_QW-GvcBS-TF9YyO7sxchM4puaGU0duohLAi4-IATWnGSFJkLD1EU0IITdIyzyfoxPuPWGYFL4_RhJcsS1khpuj7ZeyC9gM0GjzWRgctO2zGHpxu4u9LdrqVQVuDrcLSYFBKR9YELLuldTqsejw4G2xYD4CVdViOrQ7WrXHtpDY-QI8d-MEaD3gF0mmzxGEVWyvbtRh80P12wCk6UrLzcLbXGXp_uH-bPyWL18fn-d0iaRhlIYEs5WUjasXzUta1ZDKTOWelkrUAKhQ0ND5B81YUAEIIKmpR5yXNhWyFYnyGLne-ce3PMc6veu0b6DppwI6-4pSwVFCelhG92qGNs947UNXg4rZuXVFSbbLf6D77CF_sfce6h_YP_Q07Atc7wDc6bE_-z-4He22QhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102471349</pqid></control><display><type>article</type><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><source>MEDLINE</source><source>AIP Journals Complete</source><source>AIP Acoustical Society of America</source><creator>Petersen, Erik A. ; Shen, Yi</creator><creatorcontrib>Petersen, Erik A. ; Shen, Yi</creatorcontrib><description>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</description><identifier>ISSN: 0001-4966</identifier><identifier>ISSN: 1520-8524</identifier><identifier>EISSN: 1520-8524</identifier><identifier>DOI: 10.1121/10.0028537</identifier><identifier>PMID: 39254287</identifier><identifier>CODEN: JASMAN</identifier><language>eng</language><publisher>United States</publisher><subject>Acoustic Stimulation - methods ; Algorithms ; Animals ; Auditory Threshold - physiology ; Evoked Potentials, Auditory, Brain Stem - physiology ; Gerbillinae - physiology ; Guinea Pigs ; Hearing - physiology ; Humans ; Mice ; Reproducibility of Results</subject><ispartof>The Journal of the Acoustical Society of America, 2024-09, Vol.156 (3), p.1674-1687</ispartof><rights>Acoustical Society of America</rights><rights>2024 Acoustical Society of America.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</cites><orcidid>0000-0002-4486-5474 ; 0000-0003-0063-1200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jasa/article-lookup/doi/10.1121/10.0028537$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>207,208,314,777,781,791,1560,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39254287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Petersen, Erik A.</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><title>The Journal of the Acoustical Society of America</title><addtitle>J Acoust Soc Am</addtitle><description>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</description><subject>Acoustic Stimulation - methods</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Auditory Threshold - physiology</subject><subject>Evoked Potentials, Auditory, Brain Stem - physiology</subject><subject>Gerbillinae - physiology</subject><subject>Guinea Pigs</subject><subject>Hearing - physiology</subject><subject>Humans</subject><subject>Mice</subject><subject>Reproducibility of Results</subject><issn>0001-4966</issn><issn>1520-8524</issn><issn>1520-8524</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWw4QOQlwgU8COJkyWqeElFbGAdOcm4NUrsYDtI_QW-GvcBS-TF9YyO7sxchM4puaGU0duohLAi4-IATWnGSFJkLD1EU0IITdIyzyfoxPuPWGYFL4_RhJcsS1khpuj7ZeyC9gM0GjzWRgctO2zGHpxu4u9LdrqVQVuDrcLSYFBKR9YELLuldTqsejw4G2xYD4CVdViOrQ7WrXHtpDY-QI8d-MEaD3gF0mmzxGEVWyvbtRh80P12wCk6UrLzcLbXGXp_uH-bPyWL18fn-d0iaRhlIYEs5WUjasXzUta1ZDKTOWelkrUAKhQ0ND5B81YUAEIIKmpR5yXNhWyFYnyGLne-ce3PMc6veu0b6DppwI6-4pSwVFCelhG92qGNs947UNXg4rZuXVFSbbLf6D77CF_sfce6h_YP_Q07Atc7wDc6bE_-z-4He22QhA</recordid><startdate>202409</startdate><enddate>202409</enddate><creator>Petersen, Erik A.</creator><creator>Shen, Yi</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4486-5474</orcidid><orcidid>https://orcid.org/0000-0003-0063-1200</orcidid></search><sort><creationdate>202409</creationdate><title>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</title><author>Petersen, Erik A. ; Shen, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c212t-e5439c7bf369abba2a5a6329fab7e17fec1c1c716d78ee77717b7b69167ad7f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Acoustic Stimulation - methods</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Auditory Threshold - physiology</topic><topic>Evoked Potentials, Auditory, Brain Stem - physiology</topic><topic>Gerbillinae - physiology</topic><topic>Guinea Pigs</topic><topic>Hearing - physiology</topic><topic>Humans</topic><topic>Mice</topic><topic>Reproducibility of Results</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Petersen, Erik A.</creatorcontrib><creatorcontrib>Shen, Yi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of the Acoustical Society of America</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Petersen, Erik A.</au><au>Shen, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation</atitle><jtitle>The Journal of the Acoustical Society of America</jtitle><addtitle>J Acoust Soc Am</addtitle><date>2024-09</date><risdate>2024</risdate><volume>156</volume><issue>3</issue><spage>1674</spage><epage>1687</epage><pages>1674-1687</pages><issn>0001-4966</issn><issn>1520-8524</issn><eissn>1520-8524</eissn><coden>JASMAN</coden><abstract>The auditory brainstem response (ABR) can be used to evaluate hearing sensitivity of animals. However, typical measurement protocols are time-consuming. Here, an adaptive algorithm is proposed for efficient ABR threshold estimation. The algorithm relies on the update of the predicted hearing threshold from a Gaussian process model as ABR data are collected using iteratively optimized stimuli. To validate the algorithm, ABR threshold estimation is simulated by adaptively subsampling pre-collected ABR datasets. The simulated experiment is performed on 5 datasets of mouse, budgerigar, gerbil, and guinea pig ABRs (27 ears). The datasets contain 68–106 stimuli conditions, and the adaptive algorithm is configured to terminate after 20 stimuli conditions. The algorithm threshold estimate is compared against human rater estimates who visually inspected the full waveform stacks. The algorithm threshold matches the human estimates within 10 dB, averaged over frequency, for 15 of the 27 ears while reducing the number of stimuli conditions by a factor of 3–5 compared to standard practice. The intraclass correlation coefficient is 0.81 with 95% upper and lower bounds at 0.74 and 0.86, indicating moderate to good reliability between human and algorithm threshold estimates. The results demonstrate the feasibility of a Bayesian adaptive procedure for rapid ABR threshold estimation.</abstract><cop>United States</cop><pmid>39254287</pmid><doi>10.1121/10.0028537</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4486-5474</orcidid><orcidid>https://orcid.org/0000-0003-0063-1200</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-4966 |
ispartof | The Journal of the Acoustical Society of America, 2024-09, Vol.156 (3), p.1674-1687 |
issn | 0001-4966 1520-8524 1520-8524 |
language | eng |
recordid | cdi_pubmed_primary_39254287 |
source | MEDLINE; AIP Journals Complete; AIP Acoustical Society of America |
subjects | Acoustic Stimulation - methods Algorithms Animals Auditory Threshold - physiology Evoked Potentials, Auditory, Brain Stem - physiology Gerbillinae - physiology Guinea Pigs Hearing - physiology Humans Mice Reproducibility of Results |
title | Multispecies initial numerical validation of an efficient algorithm prototype for auditory brainstem response hearing threshold estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T22%3A19%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multispecies%20initial%20numerical%20validation%20of%20an%20efficient%20algorithm%20prototype%20for%20auditory%20brainstem%20response%20hearing%20threshold%20estimation&rft.jtitle=The%20Journal%20of%20the%20Acoustical%20Society%20of%20America&rft.au=Petersen,%20Erik%20A.&rft.date=2024-09&rft.volume=156&rft.issue=3&rft.spage=1674&rft.epage=1687&rft.pages=1674-1687&rft.issn=0001-4966&rft.eissn=1520-8524&rft.coden=JASMAN&rft_id=info:doi/10.1121/10.0028537&rft_dat=%3Cproquest_pubme%3E3102471349%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102471349&rft_id=info:pmid/39254287&rfr_iscdi=true |