An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy
The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. B, Materials for biology and medicine Materials for biology and medicine, 2024-09, Vol.12 (35), p.8626-8632 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8632 |
---|---|
container_issue | 35 |
container_start_page | 8626 |
container_title | Journal of materials chemistry. B, Materials for biology and medicine |
container_volume | 12 |
creator | Jiang, Chaoqun Chen, Yu Li, Xiaolong Li, Youbin |
description | The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF
4
nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O
2
into
1
O
2
for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
This study has developed a multifunctional UCNPs@ZrMOF@ICG nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy. |
doi_str_mv | 10.1039/d4tb01321b |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmed_primary_39189804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3102671444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-e8d4d1bb01bd75bcb2e6c448fc89d422def862e79ff012109d6317e4314836d33</originalsourceid><addsrcrecordid>eNpdkctLHEEQxpugRDFeco8MeBGhk37tTM_N9ZUsSALBQG5DP2rc0ZnusbtHWfCPt5PVFaxLvX58VPEh9JmSr5Tw-psVSRPKGdUf0C4jM4KrGZVbm5r83UH7Md6SHJKWkouPaIfXVNaSiF30NHdF5xL0fXcDLhU_F7_xYqFxgDh6F7sHKHrl0lK5zsLJAEn12Ieb3JqiDWqARx_uCuMD4LjMKoVTzhuVsVVMRetD3g26c2ALCzDiNA15lpYQ1Lj6hLZb1UfYf8l76M_lxfXZD3z16_vibH6FDWNlwiCtsFTnN7WtZtpoBqURQrZG1lYwZqGVJYOqbltCGSW1LTmtQHAqJC8t53voaK07Bn8_QUzN0EWTr1UO_BQbTupK1DNGWEYP36G3fgouX9dwSlhZUSFEpo7XlAk-xgBtM4ZuUGHVUNL8s6U5F9en_205zfDBi-SkB7Ab9NWEDHxZAyGazfbNV_4Mf2CSvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3102671444</pqid></control><display><type>article</type><title>An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jiang, Chaoqun ; Chen, Yu ; Li, Xiaolong ; Li, Youbin</creator><creatorcontrib>Jiang, Chaoqun ; Chen, Yu ; Li, Xiaolong ; Li, Youbin</creatorcontrib><description>The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF
4
nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O
2
into
1
O
2
for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
This study has developed a multifunctional UCNPs@ZrMOF@ICG nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.</description><identifier>ISSN: 2050-750X</identifier><identifier>ISSN: 2050-7518</identifier><identifier>EISSN: 2050-7518</identifier><identifier>DOI: 10.1039/d4tb01321b</identifier><identifier>PMID: 39189804</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Absorption spectra ; Animals ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Cancer ; Cancer therapies ; Catalysis ; Cell Proliferation - drug effects ; Cell Survival - drug effects ; Drug Screening Assays, Antitumor ; Efficiency ; Energy conversion efficiency ; Energy transfer ; Excitation spectra ; Humans ; Indocyanine Green - chemistry ; Indocyanine Green - pharmacology ; Infrared Rays ; Irradiation ; Lanthanoid Series Elements - chemistry ; Laser radiation ; Light ; Light penetration ; Metal-organic frameworks ; Metal-Organic Frameworks - chemical synthesis ; Metal-Organic Frameworks - chemistry ; Metal-Organic Frameworks - pharmacology ; Mice ; Nanocomposites ; Nanocomposites - chemistry ; Nanocomposites - therapeutic use ; Nanoparticles ; Nanoparticles - chemistry ; Near infrared radiation ; Particle Size ; Penetration depth ; Photochemotherapy ; Photodynamic therapy ; Photosensitizing Agents - chemical synthesis ; Photosensitizing Agents - chemistry ; Photosensitizing Agents - pharmacology ; Photothermal conversion ; Photothermal Therapy ; Spectral emittance ; Tumors ; Upconversion ; Zirconium</subject><ispartof>Journal of materials chemistry. B, Materials for biology and medicine, 2024-09, Vol.12 (35), p.8626-8632</ispartof><rights>Copyright Royal Society of Chemistry 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-e8d4d1bb01bd75bcb2e6c448fc89d422def862e79ff012109d6317e4314836d33</cites><orcidid>0000-0003-1693-4687 ; 0009-0003-7544-815X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27915,27916</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39189804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Li, Youbin</creatorcontrib><title>An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy</title><title>Journal of materials chemistry. B, Materials for biology and medicine</title><addtitle>J Mater Chem B</addtitle><description>The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF
4
nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O
2
into
1
O
2
for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
This study has developed a multifunctional UCNPs@ZrMOF@ICG nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.</description><subject>Absorption spectra</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Catalysis</subject><subject>Cell Proliferation - drug effects</subject><subject>Cell Survival - drug effects</subject><subject>Drug Screening Assays, Antitumor</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Energy transfer</subject><subject>Excitation spectra</subject><subject>Humans</subject><subject>Indocyanine Green - chemistry</subject><subject>Indocyanine Green - pharmacology</subject><subject>Infrared Rays</subject><subject>Irradiation</subject><subject>Lanthanoid Series Elements - chemistry</subject><subject>Laser radiation</subject><subject>Light</subject><subject>Light penetration</subject><subject>Metal-organic frameworks</subject><subject>Metal-Organic Frameworks - chemical synthesis</subject><subject>Metal-Organic Frameworks - chemistry</subject><subject>Metal-Organic Frameworks - pharmacology</subject><subject>Mice</subject><subject>Nanocomposites</subject><subject>Nanocomposites - chemistry</subject><subject>Nanocomposites - therapeutic use</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Near infrared radiation</subject><subject>Particle Size</subject><subject>Penetration depth</subject><subject>Photochemotherapy</subject><subject>Photodynamic therapy</subject><subject>Photosensitizing Agents - chemical synthesis</subject><subject>Photosensitizing Agents - chemistry</subject><subject>Photosensitizing Agents - pharmacology</subject><subject>Photothermal conversion</subject><subject>Photothermal Therapy</subject><subject>Spectral emittance</subject><subject>Tumors</subject><subject>Upconversion</subject><subject>Zirconium</subject><issn>2050-750X</issn><issn>2050-7518</issn><issn>2050-7518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkctLHEEQxpugRDFeco8MeBGhk37tTM_N9ZUsSALBQG5DP2rc0ZnusbtHWfCPt5PVFaxLvX58VPEh9JmSr5Tw-psVSRPKGdUf0C4jM4KrGZVbm5r83UH7Md6SHJKWkouPaIfXVNaSiF30NHdF5xL0fXcDLhU_F7_xYqFxgDh6F7sHKHrl0lK5zsLJAEn12Ieb3JqiDWqARx_uCuMD4LjMKoVTzhuVsVVMRetD3g26c2ALCzDiNA15lpYQ1Lj6hLZb1UfYf8l76M_lxfXZD3z16_vibH6FDWNlwiCtsFTnN7WtZtpoBqURQrZG1lYwZqGVJYOqbltCGSW1LTmtQHAqJC8t53voaK07Bn8_QUzN0EWTr1UO_BQbTupK1DNGWEYP36G3fgouX9dwSlhZUSFEpo7XlAk-xgBtM4ZuUGHVUNL8s6U5F9en_205zfDBi-SkB7Ab9NWEDHxZAyGazfbNV_4Mf2CSvw</recordid><startdate>20240911</startdate><enddate>20240911</enddate><creator>Jiang, Chaoqun</creator><creator>Chen, Yu</creator><creator>Li, Xiaolong</creator><creator>Li, Youbin</creator><general>Royal Society of Chemistry</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1693-4687</orcidid><orcidid>https://orcid.org/0009-0003-7544-815X</orcidid></search><sort><creationdate>20240911</creationdate><title>An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy</title><author>Jiang, Chaoqun ; Chen, Yu ; Li, Xiaolong ; Li, Youbin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-e8d4d1bb01bd75bcb2e6c448fc89d422def862e79ff012109d6317e4314836d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Absorption spectra</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Catalysis</topic><topic>Cell Proliferation - drug effects</topic><topic>Cell Survival - drug effects</topic><topic>Drug Screening Assays, Antitumor</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Energy transfer</topic><topic>Excitation spectra</topic><topic>Humans</topic><topic>Indocyanine Green - chemistry</topic><topic>Indocyanine Green - pharmacology</topic><topic>Infrared Rays</topic><topic>Irradiation</topic><topic>Lanthanoid Series Elements - chemistry</topic><topic>Laser radiation</topic><topic>Light</topic><topic>Light penetration</topic><topic>Metal-organic frameworks</topic><topic>Metal-Organic Frameworks - chemical synthesis</topic><topic>Metal-Organic Frameworks - chemistry</topic><topic>Metal-Organic Frameworks - pharmacology</topic><topic>Mice</topic><topic>Nanocomposites</topic><topic>Nanocomposites - chemistry</topic><topic>Nanocomposites - therapeutic use</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Near infrared radiation</topic><topic>Particle Size</topic><topic>Penetration depth</topic><topic>Photochemotherapy</topic><topic>Photodynamic therapy</topic><topic>Photosensitizing Agents - chemical synthesis</topic><topic>Photosensitizing Agents - chemistry</topic><topic>Photosensitizing Agents - pharmacology</topic><topic>Photothermal conversion</topic><topic>Photothermal Therapy</topic><topic>Spectral emittance</topic><topic>Tumors</topic><topic>Upconversion</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Chaoqun</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Li, Xiaolong</creatorcontrib><creatorcontrib>Li, Youbin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Chaoqun</au><au>Chen, Yu</au><au>Li, Xiaolong</au><au>Li, Youbin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy</atitle><jtitle>Journal of materials chemistry. B, Materials for biology and medicine</jtitle><addtitle>J Mater Chem B</addtitle><date>2024-09-11</date><risdate>2024</risdate><volume>12</volume><issue>35</issue><spage>8626</spage><epage>8632</epage><pages>8626-8632</pages><issn>2050-750X</issn><issn>2050-7518</issn><eissn>2050-7518</eissn><abstract>The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT. NaLnF
4
nanoparticles are designed to emit upconversion luminescence (UCL) under 1532 nm laser excitation, which is consistent with the absorption spectra of the ZrMOF. Benefiting from the excellent energy transfer efficiency, the ZrMOF can absorb visible light from the UCNPs and then catalyze O
2
into
1
O
2
for deep tissue PDT. To achieve combination therapy, the clinically approved ICG nanocomposite was introduced as a photothermal agent for PTT under 808 nm laser irradiation, and the photothermal conversion efficiency was calculated to be ∼28%. The designed nanosystems facilitate efficient deep-tissue tumor treatment by integrating PDT with PTT. Ultimately, this study creates a multifunctional nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.
This study has developed a multifunctional UCNPs@ZrMOF@ICG nanocomposite by combining 1532 nm light-triggered deep tissue PDT and near-infrared (NIR) light-driven PTT for personalized cancer therapy.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>39189804</pmid><doi>10.1039/d4tb01321b</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1693-4687</orcidid><orcidid>https://orcid.org/0009-0003-7544-815X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-750X |
ispartof | Journal of materials chemistry. B, Materials for biology and medicine, 2024-09, Vol.12 (35), p.8626-8632 |
issn | 2050-750X 2050-7518 2050-7518 |
language | eng |
recordid | cdi_pubmed_primary_39189804 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008- |
subjects | Absorption spectra Animals Antineoplastic Agents - chemical synthesis Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Cancer Cancer therapies Catalysis Cell Proliferation - drug effects Cell Survival - drug effects Drug Screening Assays, Antitumor Efficiency Energy conversion efficiency Energy transfer Excitation spectra Humans Indocyanine Green - chemistry Indocyanine Green - pharmacology Infrared Rays Irradiation Lanthanoid Series Elements - chemistry Laser radiation Light Light penetration Metal-organic frameworks Metal-Organic Frameworks - chemical synthesis Metal-Organic Frameworks - chemistry Metal-Organic Frameworks - pharmacology Mice Nanocomposites Nanocomposites - chemistry Nanocomposites - therapeutic use Nanoparticles Nanoparticles - chemistry Near infrared radiation Particle Size Penetration depth Photochemotherapy Photodynamic therapy Photosensitizing Agents - chemical synthesis Photosensitizing Agents - chemistry Photosensitizing Agents - pharmacology Photothermal conversion Photothermal Therapy Spectral emittance Tumors Upconversion Zirconium |
title | An intelligent NIR-IIb-responsive lanthanide@metal-organic framework core-shell nanocatalyst for combined deep-tumor therapy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A42%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20intelligent%20NIR-IIb-responsive%20lanthanide@metal-organic%20framework%20core-shell%20nanocatalyst%20for%20combined%20deep-tumor%20therapy&rft.jtitle=Journal%20of%20materials%20chemistry.%20B,%20Materials%20for%20biology%20and%20medicine&rft.au=Jiang,%20Chaoqun&rft.date=2024-09-11&rft.volume=12&rft.issue=35&rft.spage=8626&rft.epage=8632&rft.pages=8626-8632&rft.issn=2050-750X&rft.eissn=2050-7518&rft_id=info:doi/10.1039/d4tb01321b&rft_dat=%3Cproquest_pubme%3E3102671444%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3102671444&rft_id=info:pmid/39189804&rfr_iscdi=true |