A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing

Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024, Vol.33, p.4584-4599
Hauptverfasser: Li, Yan, Cai, Xia, Wu, Chunwei, Lin, Xiao, Cao, Guitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4599
container_issue
container_start_page 4584
container_title IEEE transactions on image processing
container_volume 33
creator Li, Yan
Cai, Xia
Wu, Chunwei
Lin, Xiao
Cao, Guitao
description Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "what if" scenarios gradually becoming popular in the trustworthy field. However, most previous work on model's counterfactual explanation cannot generate in-distribution attribution credibly, produces adversarial examples, or fails to give a confidence interval for the explanation. Hence, in this paper, we propose a novel approach that generates counterfactuals in locally smooth directed semantic embedding space, and at the same time gives an uncertainty estimate in the counterfactual generation process. Specifically, we identify low-dimensional directed semantic embedding space based on Principal Component Analysis (PCA) applied in differential generative model. Then, we propose latent space smoothing regularization to rectify counterfactual search within in-distribution, such that visually-imperceptible changes are more robust to adversarial perturbations. Moreover, we put forth an uncertainty estimation framework for evaluating counterfactual uncertainty. Extensive experiments on several challenging realistic Chest X-ray and CelebA datasets show that our approach performs consistently well and better than the existing several state-of-the-art baseline approaches.
doi_str_mv 10.1109/TIP.2024.3442614
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_pubmed_primary_39159026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10639340</ieee_id><sourcerecordid>3094820335</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231t-e7939c8c650780e0573b9729398ac463f45ba3c0a32670aff608f34489087c853</originalsourceid><addsrcrecordid>eNpdkE1rGzEQhkVIyVd77yGEhVxyWXek0erjaEyShrqkYJceF1nR1mvslSNpSfzvo8VuCTmNGJ55efUQ8pXCiFLQ3-YPv0YMGB8h50xQfkTOqOa0BODsOL-hkqWkXJ-S8xhXAJRXVJyQU9S00sDEGfkxLuahj-nFh7TcFRPfd8mFxtjUm3Vx-7pdm86k1nfFT5eW_qn406ZlMTXJdamYbY11xWzjfVq23d_P5FNj1tF9OcwL8vvudj75Xk4f7x8m42lpGdJUOqlRW2VFBVKByx1xoSXLS2UsF9jwamHQgkEmJJimEaCa_EGlQUmrKrwgN_vcbfDPvYup3rTRunWu6nwfawTNFQPEAb3-gK58H7rcbqAEKuRSZgr2lA0-xuCaehvajQm7mkI9iK6z6HoQXR9E55OrQ3C_2Lin_wf_zGbgcg-0zrl3eQI1csA3ZO9_gQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3096383477</pqid></control><display><type>article</type><title>A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Yan ; Cai, Xia ; Wu, Chunwei ; Lin, Xiao ; Cao, Guitao</creator><creatorcontrib>Li, Yan ; Cai, Xia ; Wu, Chunwei ; Lin, Xiao ; Cao, Guitao</creatorcontrib><description>Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "what if" scenarios gradually becoming popular in the trustworthy field. However, most previous work on model's counterfactual explanation cannot generate in-distribution attribution credibly, produces adversarial examples, or fails to give a confidence interval for the explanation. Hence, in this paper, we propose a novel approach that generates counterfactuals in locally smooth directed semantic embedding space, and at the same time gives an uncertainty estimate in the counterfactual generation process. Specifically, we identify low-dimensional directed semantic embedding space based on Principal Component Analysis (PCA) applied in differential generative model. Then, we propose latent space smoothing regularization to rectify counterfactual search within in-distribution, such that visually-imperceptible changes are more robust to adversarial perturbations. Moreover, we put forth an uncertainty estimation framework for evaluating counterfactual uncertainty. Extensive experiments on several challenging realistic Chest X-ray and CelebA datasets show that our approach performs consistently well and better than the existing several state-of-the-art baseline approaches.</description><identifier>ISSN: 1057-7149</identifier><identifier>ISSN: 1941-0042</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2024.3442614</identifier><identifier>PMID: 39159026</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Artificial intelligence ; Closed box ; Confidence intervals ; counterfactual explanation ; Dimensional analysis ; disentanglement representation ; Embedding ; image processing ; Noise ; Principal components analysis ; Regularization ; Robustness ; Semantics ; Smoothing ; Smoothing methods ; State-of-the-art reviews ; Trustworthiness ; Trustworthy AI ; Uncertainty ; X-ray imaging</subject><ispartof>IEEE transactions on image processing, 2024, Vol.33, p.4584-4599</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c231t-e7939c8c650780e0573b9729398ac463f45ba3c0a32670aff608f34489087c853</cites><orcidid>0000-0001-6209-3714 ; 0000-0002-4059-4806 ; 0000-0002-8403-7614 ; 0000-0002-8805-7129</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10639340$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10639340$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39159026$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Cai, Xia</creatorcontrib><creatorcontrib>Wu, Chunwei</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Cao, Guitao</creatorcontrib><title>A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "what if" scenarios gradually becoming popular in the trustworthy field. However, most previous work on model's counterfactual explanation cannot generate in-distribution attribution credibly, produces adversarial examples, or fails to give a confidence interval for the explanation. Hence, in this paper, we propose a novel approach that generates counterfactuals in locally smooth directed semantic embedding space, and at the same time gives an uncertainty estimate in the counterfactual generation process. Specifically, we identify low-dimensional directed semantic embedding space based on Principal Component Analysis (PCA) applied in differential generative model. Then, we propose latent space smoothing regularization to rectify counterfactual search within in-distribution, such that visually-imperceptible changes are more robust to adversarial perturbations. Moreover, we put forth an uncertainty estimation framework for evaluating counterfactual uncertainty. Extensive experiments on several challenging realistic Chest X-ray and CelebA datasets show that our approach performs consistently well and better than the existing several state-of-the-art baseline approaches.</description><subject>Artificial intelligence</subject><subject>Closed box</subject><subject>Confidence intervals</subject><subject>counterfactual explanation</subject><subject>Dimensional analysis</subject><subject>disentanglement representation</subject><subject>Embedding</subject><subject>image processing</subject><subject>Noise</subject><subject>Principal components analysis</subject><subject>Regularization</subject><subject>Robustness</subject><subject>Semantics</subject><subject>Smoothing</subject><subject>Smoothing methods</subject><subject>State-of-the-art reviews</subject><subject>Trustworthiness</subject><subject>Trustworthy AI</subject><subject>Uncertainty</subject><subject>X-ray imaging</subject><issn>1057-7149</issn><issn>1941-0042</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1rGzEQhkVIyVd77yGEhVxyWXek0erjaEyShrqkYJceF1nR1mvslSNpSfzvo8VuCTmNGJ55efUQ8pXCiFLQ3-YPv0YMGB8h50xQfkTOqOa0BODsOL-hkqWkXJ-S8xhXAJRXVJyQU9S00sDEGfkxLuahj-nFh7TcFRPfd8mFxtjUm3Vx-7pdm86k1nfFT5eW_qn406ZlMTXJdamYbY11xWzjfVq23d_P5FNj1tF9OcwL8vvudj75Xk4f7x8m42lpGdJUOqlRW2VFBVKByx1xoSXLS2UsF9jwamHQgkEmJJimEaCa_EGlQUmrKrwgN_vcbfDPvYup3rTRunWu6nwfawTNFQPEAb3-gK58H7rcbqAEKuRSZgr2lA0-xuCaehvajQm7mkI9iK6z6HoQXR9E55OrQ3C_2Lin_wf_zGbgcg-0zrl3eQI1csA3ZO9_gQ</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Li, Yan</creator><creator>Cai, Xia</creator><creator>Wu, Chunwei</creator><creator>Lin, Xiao</creator><creator>Cao, Guitao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6209-3714</orcidid><orcidid>https://orcid.org/0000-0002-4059-4806</orcidid><orcidid>https://orcid.org/0000-0002-8403-7614</orcidid><orcidid>https://orcid.org/0000-0002-8805-7129</orcidid></search><sort><creationdate>2024</creationdate><title>A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing</title><author>Li, Yan ; Cai, Xia ; Wu, Chunwei ; Lin, Xiao ; Cao, Guitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231t-e7939c8c650780e0573b9729398ac463f45ba3c0a32670aff608f34489087c853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Closed box</topic><topic>Confidence intervals</topic><topic>counterfactual explanation</topic><topic>Dimensional analysis</topic><topic>disentanglement representation</topic><topic>Embedding</topic><topic>image processing</topic><topic>Noise</topic><topic>Principal components analysis</topic><topic>Regularization</topic><topic>Robustness</topic><topic>Semantics</topic><topic>Smoothing</topic><topic>Smoothing methods</topic><topic>State-of-the-art reviews</topic><topic>Trustworthiness</topic><topic>Trustworthy AI</topic><topic>Uncertainty</topic><topic>X-ray imaging</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yan</creatorcontrib><creatorcontrib>Cai, Xia</creatorcontrib><creatorcontrib>Wu, Chunwei</creatorcontrib><creatorcontrib>Lin, Xiao</creatorcontrib><creatorcontrib>Cao, Guitao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Yan</au><au>Cai, Xia</au><au>Wu, Chunwei</au><au>Lin, Xiao</au><au>Cao, Guitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2024</date><risdate>2024</risdate><volume>33</volume><spage>4584</spage><epage>4599</epage><pages>4584-4599</pages><issn>1057-7149</issn><issn>1941-0042</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Despite the large-scale adoption of Artificial Intelligence (AI) models in healthcare, there is an urgent need for trustworthy tools to rigorously backtrack the model decisions so that they behave reliably. Counterfactual explanations take a counter-intuitive approach to allow users to explore "what if" scenarios gradually becoming popular in the trustworthy field. However, most previous work on model's counterfactual explanation cannot generate in-distribution attribution credibly, produces adversarial examples, or fails to give a confidence interval for the explanation. Hence, in this paper, we propose a novel approach that generates counterfactuals in locally smooth directed semantic embedding space, and at the same time gives an uncertainty estimate in the counterfactual generation process. Specifically, we identify low-dimensional directed semantic embedding space based on Principal Component Analysis (PCA) applied in differential generative model. Then, we propose latent space smoothing regularization to rectify counterfactual search within in-distribution, such that visually-imperceptible changes are more robust to adversarial perturbations. Moreover, we put forth an uncertainty estimation framework for evaluating counterfactual uncertainty. Extensive experiments on several challenging realistic Chest X-ray and CelebA datasets show that our approach performs consistently well and better than the existing several state-of-the-art baseline approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>39159026</pmid><doi>10.1109/TIP.2024.3442614</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6209-3714</orcidid><orcidid>https://orcid.org/0000-0002-4059-4806</orcidid><orcidid>https://orcid.org/0000-0002-8403-7614</orcidid><orcidid>https://orcid.org/0000-0002-8805-7129</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2024, Vol.33, p.4584-4599
issn 1057-7149
1941-0042
1941-0042
language eng
recordid cdi_pubmed_primary_39159026
source IEEE Electronic Library (IEL)
subjects Artificial intelligence
Closed box
Confidence intervals
counterfactual explanation
Dimensional analysis
disentanglement representation
Embedding
image processing
Noise
Principal components analysis
Regularization
Robustness
Semantics
Smoothing
Smoothing methods
State-of-the-art reviews
Trustworthiness
Trustworthy AI
Uncertainty
X-ray imaging
title A Trustworthy Counterfactual Explanation Method With Latent Space Smoothing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A04%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Trustworthy%20Counterfactual%20Explanation%20Method%20With%20Latent%20Space%20Smoothing&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Li,%20Yan&rft.date=2024&rft.volume=33&rft.spage=4584&rft.epage=4599&rft.pages=4584-4599&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2024.3442614&rft_dat=%3Cproquest_RIE%3E3094820335%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3096383477&rft_id=info:pmid/39159026&rft_ieee_id=10639340&rfr_iscdi=true